Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνσή σας ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗκαι τα λοιπά.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Συλλέγεται από εμάς προσωπικές πληροφορίεςμας επιτρέπει να επικοινωνήσουμε μαζί σας και να σας ενημερώσουμε για μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο - σύμφωνα με το νόμο, τη δικαστική διαδικασία, τις νομικές διαδικασίες ή/και με βάση δημόσια αιτήματα ή αιτήματα από κυβερνητικές υπηρεσίεςστο έδαφος της Ρωσικής Ομοσπονδίας - αποκαλύψτε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον αντίστοιχο τρίτο διάδοχο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Άρα, έχουμε δυνάμεις δύο. Εάν πάρετε τον αριθμό από την κάτω γραμμή, μπορείτε εύκολα να βρείτε τη δύναμη στην οποία θα πρέπει να αυξήσετε δύο για να λάβετε αυτόν τον αριθμό. Για παράδειγμα, για να πάρετε 16, πρέπει να αυξήσετε δύο στην τέταρτη δύναμη. Και για να πάρετε 64, πρέπει να αυξήσετε δύο στην έκτη δύναμη. Αυτό φαίνεται από τον πίνακα.

Και τώρα - στην πραγματικότητα, ο ορισμός του λογάριθμου:

Η βάση ενός λογάριθμου του x είναι η ισχύς στην οποία πρέπει να αυξηθεί το a για να ληφθεί x.

Ονομασία: log a x = b, όπου a είναι η βάση, x είναι το όρισμα, b είναι αυτό με το οποίο ισούται πραγματικά ο λογάριθμος.

Για παράδειγμα, 2 3 = 8 ⇒ log 2 8 = 3 (ο λογάριθμος βάσης 2 του 8 είναι τρεις επειδή 2 3 = 8). Με το ίδιο αρχείο καταγραφής επιτυχίας 2 64 = 6, αφού 2 6 = 64.

Η πράξη εύρεσης του λογάριθμου ενός αριθμού σε μια δεδομένη βάση ονομάζεται λογάριθμος. Λοιπόν, ας προσθέσουμε μια νέα γραμμή στον πίνακα μας:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
ημερολόγιο 2 2 = 1ημερολόγιο 2 4 = 2 ημερολόγιο 2 8 = 3ημερολόγιο 2 16 = 4 ημερολόγιο 2 32 = 5ημερολόγιο 2 64 = 6

Δυστυχώς, δεν υπολογίζονται όλοι οι λογάριθμοι τόσο εύκολα. Για παράδειγμα, δοκιμάστε να βρείτε το αρχείο καταγραφής 2 5 . Ο αριθμός 5 δεν είναι στον πίνακα, αλλά η λογική υπαγορεύει ότι ο λογάριθμος θα βρίσκεται κάπου στο τμήμα. Επειδή 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Αυτοί οι αριθμοί ονομάζονται παράλογοι: οι αριθμοί μετά την υποδιαστολή μπορούν να γραφτούν επ' άπειρον και δεν επαναλαμβάνονται ποτέ. Εάν ο λογάριθμος αποδειχθεί παράλογος, είναι καλύτερα να τον αφήσετε έτσι: log 2 5, log 3 8, log 5 100.

Είναι σημαντικό να κατανοήσουμε ότι ένας λογάριθμος είναι μια έκφραση με δύο μεταβλητές (τη βάση και το όρισμα). Στην αρχή, πολλοί άνθρωποι μπερδεύουν πού είναι η βάση και πού είναι το επιχείρημα. Για να αποφύγετε ενοχλητικές παρεξηγήσεις, απλά δείτε την εικόνα:

Μπροστά μας δεν υπάρχει τίποτα άλλο από τον ορισμό του λογάριθμου. Θυμάμαι: ο λογάριθμος είναι δύναμη, στην οποία πρέπει να ενσωματωθεί η βάση για να ληφθεί ένα όρισμα. Είναι η βάση που ανυψώνεται σε δύναμη - επισημαίνεται με κόκκινο χρώμα στην εικόνα. Αποδεικνύεται ότι η βάση είναι πάντα στο κάτω μέρος! Λέω στους μαθητές μου αυτόν τον υπέροχο κανόνα στο πρώτο μάθημα - και δεν δημιουργείται σύγχυση.

Καταλάβαμε τον ορισμό - το μόνο που μένει είναι να μάθουμε πώς να μετράμε λογάριθμους, δηλ. απαλλαγείτε από το σημάδι "κούτσουρο". Αρχικά, σημειώνουμε ότι δύο σημαντικά στοιχεία προκύπτουν από τον ορισμό:

  1. Το όρισμα και η βάση πρέπει πάντα να είναι μεγαλύτερα από το μηδέν. Αυτό προκύπτει από τον ορισμό ενός βαθμού από έναν ορθολογικό εκθέτη, στον οποίο ανάγεται ο ορισμός ενός λογάριθμου.
  2. Η βάση πρέπει να είναι διαφορετική από τη μία, αφού η μία σε οποιοδήποτε βαθμό παραμένει μία. Εξαιτίας αυτού, το ερώτημα «σε ποια δύναμη πρέπει να υψωθεί κανείς για να πάρει δύο» είναι άνευ σημασίας. Δεν υπάρχει τέτοιο πτυχίο!

Τέτοιοι περιορισμοί ονομάζονται εύρος αποδεκτών τιμών(ODZ). Αποδεικνύεται ότι το ODZ του λογαρίθμου μοιάζει με αυτό: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Σημειώστε ότι δεν υπάρχουν περιορισμοί στον αριθμό b (την τιμή του λογάριθμου). Για παράδειγμα, ο λογάριθμος μπορεί κάλλιστα να είναι αρνητικός: log 2 0,5 = −1, επειδή 0,5 = 2 −1.

Ωστόσο, τώρα εξετάζουμε μόνο αριθμητικές εκφράσεις, όπου δεν απαιτείται να γνωρίζουμε το VA του λογαρίθμου. Όλοι οι περιορισμοί έχουν ήδη ληφθεί υπόψη από τους συντάκτες των εργασιών. Αλλά όταν οι λογαριθμικές εξισώσεις και οι ανισότητες μπουν στο παιχνίδι, οι απαιτήσεις DL θα γίνουν υποχρεωτικές. Άλλωστε, η βάση και το επιχείρημα μπορεί να περιέχουν πολύ ισχυρές κατασκευές που δεν ανταποκρίνονται απαραίτητα στους παραπάνω περιορισμούς.

Τώρα ας δούμε το γενικό σχήμα για τον υπολογισμό των λογαρίθμων. Αποτελείται από τρία βήματα:

  1. Να εκφράσετε τη βάση α και το όρισμα x ως δύναμη με την ελάχιστη δυνατή βάση μεγαλύτερη από το ένα. Στην πορεία, είναι καλύτερα να απαλλαγείτε από τα δεκαδικά.
  2. Λύστε την εξίσωση για τη μεταβλητή b: x = a b ;
  3. Ο αριθμός β που προκύπτει θα είναι η απάντηση.

Αυτό είναι όλο! Εάν ο λογάριθμος αποδειχθεί παράλογος, αυτό θα είναι ορατό ήδη στο πρώτο βήμα. Η απαίτηση να είναι η βάση μεγαλύτερη από μία είναι πολύ σημαντική: αυτό μειώνει την πιθανότητα λάθους και απλοποιεί σημαντικά τους υπολογισμούς. Το ίδιο με δεκαδικά: αν τα μετατρέψετε αμέσως σε κανονικά, θα υπάρξουν πολύ λιγότερα σφάλματα.

Ας δούμε πώς λειτουργεί αυτό το σχήμα χρησιμοποιώντας συγκεκριμένα παραδείγματα:

Εργο. Υπολογίστε τον λογάριθμο: log 5 25

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του πέντε: 5 = 5 1 ; 25 = 5 2 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Λάβαμε την απάντηση: 2.

Εργο. Υπολογίστε τον λογάριθμο:

Εργο. Υπολογίστε τον λογάριθμο: log 4 64

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 4 = 2 2 ; 64 = 2 6 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Λάβαμε την απάντηση: 3.

Εργο. Υπολογίστε τον λογάριθμο: log 16 1

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 16 = 2 4 ; 1 = 2 0 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Λάβαμε την απάντηση: 0.

Εργο. Υπολογίστε τον λογάριθμο: log 7 14

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του επτά: 7 = 7 1 ; Το 14 δεν μπορεί να αναπαρασταθεί ως δύναμη του επτά, αφού το 7 1< 14 < 7 2 ;
  2. Από προηγούμενη παράγραφοέπεται ότι ο λογάριθμος δεν μετράει.
  3. Η απάντηση είναι καμία αλλαγή: ημερολόγιο 7 14.

Μια μικρή σημείωση για το τελευταίο παράδειγμα. Πώς μπορείτε να είστε σίγουροι ότι ένας αριθμός δεν είναι ακριβής δύναμη ενός άλλου αριθμού; Είναι πολύ απλό - απλώς συνυπολογίστε το σε πρωταρχικούς παράγοντες. Εάν η επέκταση έχει τουλάχιστον δύο διαφορετικούς παράγοντες, ο αριθμός δεν είναι ακριβής ισχύς.

Εργο. Μάθετε αν οι αριθμοί είναι ακριβείς δυνάμεις: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - ακριβής βαθμός, επειδή υπάρχει μόνο ένας πολλαπλασιαστής.
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - δεν είναι ακριβής δύναμη, αφού υπάρχουν δύο παράγοντες: 3 και 2.
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ακριβής βαθμός.
35 = 7 · 5 - και πάλι δεν είναι ακριβής ισχύς.
14 = 7 · 2 - και πάλι όχι ακριβής βαθμός.

Ας σημειώσουμε επίσης ότι εμείς οι ίδιοι πρώτοι αριθμοίείναι πάντα ακριβείς βαθμοί του εαυτού τους.

Δεκαδικός λογάριθμος

Μερικοί λογάριθμοι είναι τόσο συνηθισμένοι που έχουν ειδικό όνομα και σύμβολο.

Ο δεκαδικός λογάριθμος του x είναι ο λογάριθμος στη βάση του 10, δηλ. Η ισχύς στην οποία πρέπει να αυξηθεί ο αριθμός 10 για να ληφθεί ο αριθμός x. Ονομασία: lg x.

Για παράδειγμα, log 10 = 1; lg 100 = 2; lg 1000 = 3 - κ.λπ.

Από εδώ και στο εξής, όταν εμφανίζεται μια φράση όπως "Find lg 0.01" σε ένα σχολικό βιβλίο, να ξέρετε: αυτό δεν είναι τυπογραφικό λάθος. Αυτός είναι ένας δεκαδικός λογάριθμος. Ωστόσο, εάν δεν είστε εξοικειωμένοι με αυτόν τον συμβολισμό, μπορείτε πάντα να τον ξαναγράψετε:
log x = log 10 x

Ό,τι ισχύει για τους συνηθισμένους λογάριθμους ισχύει και για τους δεκαδικούς λογάριθμους.

Φυσικός λογάριθμος

Υπάρχει ένας άλλος λογάριθμος που έχει τη δική του ονομασία. Κατά κάποιο τρόπο, είναι ακόμη πιο σημαντικό από το δεκαδικό. Είναι περίπουσχετικά με τον φυσικό λογάριθμο.

Ο φυσικός λογάριθμος του x είναι ο λογάριθμος στη βάση του e, δηλ. η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός e για να ληφθεί ο αριθμός x. Ονομασία: ln x .

Πολλοί θα ρωτήσουν: ποιος είναι ο αριθμός e; Αυτός είναι ένας παράλογος αριθμός, είναι ακριβής αξίααδύνατο να βρεθεί και να καταγραφεί. Θα δώσω μόνο τα πρώτα στοιχεία:
e = 2,718281828459...

Δεν θα υπεισέλθουμε σε λεπτομέρειες σχετικά με το τι είναι αυτός ο αριθμός και γιατί χρειάζεται. Απλώς θυμηθείτε ότι το e είναι η βάση του φυσικού λογάριθμου:
ln x = log e x

Έτσι ln e = 1 ; ln e 2 = 2; ln e 16 = 16 - κ.λπ. Από την άλλη πλευρά, το ln 2 είναι ένας παράλογος αριθμός. Γενικά, ο φυσικός λογάριθμος οποιουδήποτε ρητός αριθμόςπαράλογος. Εκτός, φυσικά, από ένα: ln 1 = 0.

Για τους φυσικούς λογάριθμους, ισχύουν όλοι οι κανόνες που ισχύουν για τους συνηθισμένους λογάριθμους.

Όπως γνωρίζετε, κατά τον πολλαπλασιασμό των παραστάσεων με δυνάμεις, οι εκθέτες τους αθροίζονται πάντα (a b *a c = a b+c). Αυτός ο μαθηματικός νόμος προήλθε από τον Αρχιμήδη και αργότερα, τον 8ο αιώνα, ο μαθηματικός Virasen δημιούργησε έναν πίνακα με ακέραιους εκθέτες. Ήταν αυτοί που χρησίμευσαν για την περαιτέρω ανακάλυψη των λογαρίθμων. Παραδείγματα χρήσης αυτής της συνάρτησης μπορούν να βρεθούν σχεδόν παντού όπου χρειάζεται να απλοποιήσετε τον περίπλοκο πολλαπλασιασμό με απλή πρόσθεση. Εάν αφιερώσετε 10 λεπτά για να διαβάσετε αυτό το άρθρο, θα σας εξηγήσουμε τι είναι οι λογάριθμοι και πώς να εργαστείτε με αυτούς. Σε απλή και προσιτή γλώσσα.

Ορισμός στα μαθηματικά

Ένας λογάριθμος είναι μια έκφραση της ακόλουθης μορφής: log a b=c, δηλαδή, ο λογάριθμος οποιουδήποτε μη αρνητικού αριθμού (δηλαδή οποιουδήποτε θετικού) "b" στη βάση του "a" θεωρείται ότι είναι η δύναμη "c ” στην οποία πρέπει να αυξηθεί η βάση “a” για να ληφθεί τελικά η τιμή “b”. Ας αναλύσουμε τον λογάριθμο χρησιμοποιώντας παραδείγματα, ας πούμε ότι υπάρχει μια έκφραση log 2 8. Πώς να βρείτε την απάντηση; Είναι πολύ απλό, πρέπει να βρείτε μια ισχύ τέτοια ώστε από το 2 στην απαιτούμενη ισχύ να παίρνετε 8. Αφού κάνετε κάποιους υπολογισμούς στο κεφάλι σας, παίρνουμε τον αριθμό 3! Και αυτό είναι αλήθεια, γιατί το 2 στη δύναμη του 3 δίνει την απάντηση ως 8.

Τύποι λογαρίθμων

Για πολλούς μαθητές και φοιτητές, αυτό το θέμα φαίνεται περίπλοκο και ακατανόητο, αλλά στην πραγματικότητα οι λογάριθμοι δεν είναι τόσο τρομακτικοί, το κύριο πράγμα είναι να κατανοήσουμε τη γενική τους σημασία και να θυμόμαστε τις ιδιότητές τους και ορισμένους κανόνες. Υπάρχουν τρεις διαφορετικοί τύποι λογαριθμικών παραστάσεων:

  1. Φυσικός λογάριθμος ln a, όπου η βάση είναι ο αριθμός Euler (e = 2,7).
  2. Δεκαδικό α, όπου η βάση είναι 10.
  3. Λογάριθμος οποιουδήποτε αριθμού b στη βάση a>1.

Κάθε ένα από αυτά επιλύεται με έναν τυπικό τρόπο, συμπεριλαμβανομένης της απλοποίησης, της αναγωγής και της επακόλουθης αναγωγής σε έναν μόνο λογάριθμο χρησιμοποιώντας λογαριθμικά θεωρήματα. Για να λάβετε τις σωστές τιμές των λογαρίθμων, θα πρέπει να θυμάστε τις ιδιότητές τους και την ακολουθία των ενεργειών κατά την επίλυσή τους.

Κανόνες και ορισμένοι περιορισμοί

Στα μαθηματικά υπάρχουν αρκετοί κανόνες-περιορισμοί που γίνονται δεκτοί ως αξίωμα, δηλαδή δεν υπόκεινται σε συζήτηση και είναι η αλήθεια. Για παράδειγμα, είναι αδύνατο να διαιρεθούν οι αριθμοί με το μηδέν, και είναι επίσης αδύνατο να εξαχθεί η ζυγή ρίζα των αρνητικών αριθμών. Οι λογάριθμοι έχουν επίσης τους δικούς τους κανόνες, ακολουθώντας τους οποίους μπορείτε εύκολα να μάθετε να εργάζεστε ακόμη και με μεγάλες και μεγάλες λογαριθμικές εκφράσεις:

  • Η βάση "a" πρέπει να είναι πάντα μεγαλύτερη από το μηδέν και όχι ίση με 1, διαφορετικά η έκφραση θα χάσει το νόημά της, επειδή το "1" και το "0" σε οποιοδήποτε βαθμό είναι πάντα ίσα με τις τιμές τους.
  • εάν a > 0, τότε a b >0, αποδεικνύεται ότι το "c" πρέπει επίσης να είναι μεγαλύτερο από το μηδέν.

Πώς να λύσετε λογάριθμους;

Για παράδειγμα, δίνεται η εργασία να βρείτε την απάντηση στην εξίσωση 10 x = 100. Αυτό είναι πολύ εύκολο, πρέπει να επιλέξετε μια δύναμη αυξάνοντας τον αριθμό δέκα στον οποίο λαμβάνουμε 100. Αυτό, φυσικά, είναι 10 2 = 100.

Τώρα ας αναπαραστήσουμε αυτήν την έκφραση σε λογαριθμική μορφή. Παίρνουμε log 10 100 = 2. Κατά την επίλυση λογαρίθμων, όλες οι ενέργειες πρακτικά συγκλίνουν για να βρούμε την ισχύ στην οποία είναι απαραίτητο να εισαγάγουμε τη βάση του λογαρίθμου για να λάβουμε έναν δεδομένο αριθμό.

Για να προσδιορίσετε με ακρίβεια την τιμή ενός άγνωστου βαθμού, πρέπει να μάθετε πώς να εργάζεστε με έναν πίνακα βαθμών. Μοιάζει με αυτό:

Όπως μπορείτε να δείτε, ορισμένοι εκθέτες μπορούν να μαντευτούν διαισθητικά εάν έχετε τεχνικό μυαλό και γνώση του πίνακα πολλαπλασιασμού. Ωστόσο για μεγάλες αξίεςθα χρειαστείτε έναν πίνακα πτυχίων. Μπορεί να χρησιμοποιηθεί ακόμη και από εκείνους που δεν γνωρίζουν απολύτως τίποτα για πολύπλοκα μαθηματικά θέματα. Η αριστερή στήλη περιέχει αριθμούς (βάση α), η επάνω σειρά αριθμών είναι η τιμή της δύναμης c στην οποία αυξάνεται ο αριθμός a. Στη διασταύρωση, τα κελιά περιέχουν τις αριθμητικές τιμές που είναι η απάντηση (a c =b). Ας πάρουμε, για παράδειγμα, το πρώτο κελί με τον αριθμό 10 και τετράγωνο το, παίρνουμε την τιμή 100, η ​​οποία υποδεικνύεται στην τομή των δύο κελιών μας. Όλα είναι τόσο απλά και εύκολα που θα καταλάβει και ο πιο αληθινός ανθρωπιστής!

Εξισώσεις και ανισώσεις

Αποδεικνύεται ότι υπό ορισμένες συνθήκες ο εκθέτης είναι ο λογάριθμος. Επομένως, οποιεσδήποτε μαθηματικές αριθμητικές εκφράσεις μπορούν να γραφτούν ως λογαριθμική ισότητα. Για παράδειγμα, το 3 4 = 81 μπορεί να γραφτεί ως ο βασικός 3 λογάριθμος του 81 ίσος με τέσσερα (log 3 81 = 4). Για αρνητικές δυνάμειςοι κανόνες είναι οι ίδιοι: 2 -5 = 1/32 το γράφουμε ως λογάριθμο, παίρνουμε log 2 (1/32) = -5. Ένα από τα πιο συναρπαστικά τμήματα των μαθηματικών είναι το θέμα των «λογαρίθμων». Παραδείγματα και λύσεις εξισώσεων θα δούμε παρακάτω, αμέσως μετά τη μελέτη των ιδιοτήτων τους. Τώρα ας δούμε πώς μοιάζουν οι ανισότητες και πώς να τις διακρίνουμε από τις εξισώσεις.

Δίνεται μια έκφραση της ακόλουθης μορφής: log 2 (x-1) > 3 - είναι λογαριθμική ανισότητα, αφού η άγνωστη τιμή «x» βρίσκεται κάτω από το πρόσημο του λογαρίθμου. Και επίσης στην έκφραση συγκρίνονται δύο ποσότητες: ο λογάριθμος του επιθυμητού αριθμού στη βάση δύο είναι μεγαλύτερος από τον αριθμό τρία.

Η πιο σημαντική διαφορά μεταξύ λογαριθμικών εξισώσεων και ανισώσεων είναι ότι οι εξισώσεις με λογάριθμους (για παράδειγμα, ο λογάριθμος 2 x = √9) υποδηλώνουν μία ή περισσότερες συγκεκριμένες απαντήσεις. αριθμητικές τιμές, ενώ κατά την επίλυση της ανισότητας προσδιορίζονται τόσο το εύρος των επιτρεπόμενων τιμών όσο και τα σημεία διακοπής αυτής της συνάρτησης. Κατά συνέπεια, η απάντηση δεν είναι ένα απλό σύνολο μεμονωμένους αριθμούςκαθώς στην απάντηση είναι μια εξίσωση, και το a είναι μια συνεχής σειρά ή σύνολο αριθμών.

Βασικά θεωρήματα για τους λογάριθμους

Κατά την επίλυση πρωτόγονων εργασιών εύρεσης των τιμών του λογάριθμου, οι ιδιότητές του μπορεί να μην είναι γνωστές. Ωστόσο, όταν πρόκειται για λογαριθμικές εξισώσεις ή ανισώσεις, πρώτα απ 'όλα, είναι απαραίτητο να κατανοήσουμε με σαφήνεια και να εφαρμόσουμε στην πράξη όλες τις βασικές ιδιότητες των λογαρίθμων. Θα δούμε παραδείγματα εξισώσεων αργότερα· ας δούμε πρώτα κάθε ιδιότητα με περισσότερες λεπτομέρειες.

  1. Η κύρια ταυτότητα μοιάζει με αυτό: a logaB =B. Ισχύει μόνο όταν το α είναι μεγαλύτερο από 0, όχι ίσο με ένα και το Β είναι μεγαλύτερο από μηδέν.
  2. Ο λογάριθμος του προϊόντος μπορεί να αναπαρασταθεί με τον ακόλουθο τύπο: log d (s 1 * s 2) = log d s 1 + log d s 2. Στην περίπτωση αυτή προαπαιτούμενοείναι: d, s 1 και s 2 > 0; a≠1. Μπορείτε να δώσετε μια απόδειξη για αυτόν τον λογαριθμικό τύπο, με παραδείγματα και λύση. Έστω log a s 1 = f 1 και log a s 2 = f 2, μετά a f1 = s 1, a f2 = s 2. Λαμβάνουμε ότι s 1 * s 2 = a f1 *a f2 = a f1+f2 (ιδιότητες του μοίρες ), και μετά εξ ορισμού: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, το οποίο έπρεπε να αποδειχθεί.
  3. Ο λογάριθμος του πηλίκου μοιάζει με αυτό: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Το θεώρημα με τη μορφή τύπου παίρνει επόμενη προβολή: log a q b n = n/q log a b.

Αυτός ο τύπος ονομάζεται «ιδιότητα του βαθμού του λογάριθμου». Μοιάζει με τις ιδιότητες των συνηθισμένων βαθμών και δεν προκαλεί έκπληξη, γιατί όλα τα μαθηματικά βασίζονται σε φυσικά αξιώματα. Ας δούμε την απόδειξη.

Έστω log a b = t, προκύπτει t =b. Αν υψώσουμε και τα δύο μέρη στην ισχύ m: a tn = b n ;

αλλά εφόσον a tn = (a q) nt/q = b n, επομένως log a q b n = (n*t)/t, τότε log a q b n = n/q log a b. Το θεώρημα έχει αποδειχθεί.

Παραδείγματα προβλημάτων και ανισοτήτων

Οι πιο συνηθισμένοι τύποι προβλημάτων στους λογάριθμους είναι παραδείγματα εξισώσεων και ανισώσεων. Βρίσκονται σχεδόν σε όλα τα προβληματικά βιβλία και αποτελούν επίσης υποχρεωτικό μέρος των εξετάσεων των μαθηματικών. Για εισαγωγή στο πανεπιστήμιο ή επιτυχία εισαγωγικές εξετάσειςστα μαθηματικά πρέπει να ξέρεις πώς να λύνεις σωστά τέτοια προβλήματα.

Δυστυχώς, δεν υπάρχει ένα ενιαίο σχέδιο ή σχήμα για την επίλυση και τον προσδιορισμό της άγνωστης τιμής του λογαρίθμου, ωστόσο, μπορεί να εφαρμοστεί σε κάθε μαθηματική ανισότητα ή λογαριθμική εξίσωση ορισμένους κανόνες. Πρώτα απ 'όλα, θα πρέπει να μάθετε εάν η έκφραση μπορεί να απλοποιηθεί ή να οδηγήσει σε γενική εμφάνιση. Μπορείτε να απλοποιήσετε μεγάλες λογαριθμικές εκφράσεις εάν χρησιμοποιήσετε σωστά τις ιδιότητές τους. Ας τους γνωρίσουμε γρήγορα.

Όταν αποφασίζει λογαριθμικές εξισώσεις, θα πρέπει να καθορίσουμε ποιον τύπο λογάριθμου έχουμε: μια παράσταση παραδείγματος μπορεί να περιέχει έναν φυσικό λογάριθμο ή έναν δεκαδικό.

Ακολουθούν παραδείγματα ln100, ln1026. Η λύση τους συνοψίζεται στο γεγονός ότι πρέπει να καθορίσουν την ισχύ στην οποία η βάση 10 θα είναι ίση με 100 και 1026, αντίστοιχα. Για να λύσετε φυσικούς λογάριθμους, πρέπει να εφαρμόσετε λογαριθμικές ταυτότητες ή τις ιδιότητές τους. Ας δούμε παραδείγματα επίλυσης λογαριθμικών προβλημάτων διαφόρων τύπων.

Πώς να χρησιμοποιήσετε τους τύπους λογαρίθμων: με παραδείγματα και λύσεις

Ας δούμε λοιπόν παραδείγματα χρήσης των βασικών θεωρημάτων για τους λογαρίθμους.

  1. Η ιδιότητα του λογάριθμου ενός προϊόντος μπορεί να χρησιμοποιηθεί σε εργασίες όπου είναι απαραίτητο να επεκταθεί μεγάλης σημασίαςτους αριθμούς β σε απλούστερους παράγοντες. Για παράδειγμα, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Η απάντηση είναι 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - όπως μπορείτε να δείτε, χρησιμοποιώντας την τέταρτη ιδιότητα της λογαριθμικής ισχύος, καταφέραμε να λύσουμε μια φαινομενικά πολύπλοκη και άλυτη έκφραση. Απλά πρέπει να συνυπολογίσετε τη βάση και στη συνέχεια να αφαιρέσετε τις τιμές εκθέτη από το πρόσημο του λογαρίθμου.

Εργασίες από την Ενιαία Κρατική Εξέταση

Οι λογάριθμοι βρίσκονται συχνά στις εισαγωγικές εξετάσεις, ειδικά πολλά λογαριθμικά προβλήματα στις εξετάσεις του Ενιαίου Κράτους ( Κρατική εξέτασηγια όλους τους αποφοίτους του σχολείου). Συνήθως, αυτές οι εργασίες υπάρχουν όχι μόνο στο μέρος Α (το πιο εύκολο τεστ της εξέτασης), αλλά και στο μέρος Γ (οι πιο περίπλοκες και ογκώδεις εργασίες). Η εξέταση απαιτεί ακριβή και τέλεια γνώση του θέματος «Φυσικοί λογάριθμοι».

Παραδείγματα και λύσεις σε προβλήματα λαμβάνονται από επίσημους Επιλογές Ενιαίας Κρατικής Εξέτασης. Ας δούμε πώς επιλύονται τέτοιες εργασίες.

Δίνεται log 2 (2x-1) = 4. Λύση:
ας ξαναγράψουμε την παράσταση, απλοποιώντας την λίγο log 2 (2x-1) = 2 2, με τον ορισμό του λογάριθμου παίρνουμε ότι 2x-1 = 2 4, άρα 2x = 17. x = 8,5.

  • Είναι καλύτερο να μειώσετε όλους τους λογάριθμους στην ίδια βάση, έτσι ώστε η λύση να μην είναι περίπλοκη και μπερδεμένη.
  • Όλες οι εκφράσεις κάτω από το πρόσημο του λογάριθμου υποδεικνύονται ως θετικές, επομένως, όταν ο εκθέτης μιας παράστασης που βρίσκεται κάτω από το πρόσημο του λογάριθμου και ως βάση της αφαιρείται ως πολλαπλασιαστής, η παράσταση που παραμένει κάτω από τον λογάριθμο πρέπει να είναι θετική.

Δίνονται οι βασικές ιδιότητες του λογάριθμου, γράφημα λογάριθμου, πεδίο ορισμού, σύνολο τιμών, βασικοί τύποι, αύξηση και μείωση. Εξετάζεται η εύρεση της παραγώγου ενός λογάριθμου. Και επίσης το αναπόσπαστο, επέκταση σε σειρά ισχύοςκαι αναπαράσταση με χρήση μιγαδικών αριθμών.

Ορισμός λογάριθμου

Λογάριθμος με βάση αείναι συνάρτηση του y (x) = log a x, αντίστροφη της εκθετικής συνάρτησης με βάση α: x (y) = a y.

Δεκαδικός λογάριθμοςείναι ο λογάριθμος στη βάση ενός αριθμού 10 : log x ≡ log 10 x.

Φυσικός λογάριθμοςείναι ο λογάριθμος στη βάση του e: ln x ≡ log e x.

2,718281828459045... ;
.

Η γραφική παράσταση του λογάριθμου προκύπτει από τη γραφική παράσταση της εκθετικής συνάρτησης κατοπτρίζοντας την ως προς την ευθεία y = x. Αριστερά υπάρχουν γραφήματα της συνάρτησης y (x) = log a xγια τέσσερις τιμές βάσεις λογαρίθμων: α = 2 , α = 8 , α = 1/2 και α = 1/8 . Το γράφημα δείχνει ότι όταν ένα > 1 ο λογάριθμος αυξάνεται μονότονα. Καθώς το x αυξάνεται, η ανάπτυξη επιβραδύνεται σημαντικά. Στο 0 < a < 1 ο λογάριθμος μειώνεται μονότονα.

Ιδιότητες του λογάριθμου

Τομέας, σύνολο τιμών, αύξηση, μείωση

Ο λογάριθμος είναι μονότονη συνάρτηση, άρα δεν έχει ακρότατα. Οι κύριες ιδιότητες του λογαρίθμου παρουσιάζονται στον πίνακα.

Τομέα 0 < x < + ∞ 0 < x < + ∞
Εύρος τιμών - ∞ < y < + ∞ - ∞ < y < + ∞
Μονότονη ομιλία αυξάνεται μονοτονικά μειώνεται μονοτονικά
Μηδενικά, y = 0 x = 1 x = 1
Σημεία τομής με τον άξονα τεταγμένων, x = 0 Οχι Οχι
+ ∞ - ∞
- ∞ + ∞

Ιδιωτικές αξίες


Ο λογάριθμος στη βάση 10 ονομάζεται δεκαδικός λογάριθμοςκαι συμβολίζεται ως εξής:

Λογάριθμος προς βάση μιπου ονομάζεται φυσικός λογάριθμος :

Βασικοί τύποι για λογάριθμους

Ιδιότητες του λογάριθμου που προκύπτουν από τον ορισμό της αντίστροφης συνάρτησης:

Η κύρια ιδιότητα των λογαρίθμων και οι συνέπειές της

Φόρμουλα αντικατάστασης βάσης

Λογάριθμος- Αυτό μαθηματική πράξηπαίρνοντας τον λογάριθμο. Κατά τη λήψη λογαρίθμων, τα γινόμενα των παραγόντων μετατρέπονται σε αθροίσματα όρων.

Ενίσχυσηείναι η αντίστροφη μαθηματική πράξη του λογάριθμου. Κατά τη διάρκεια της ενίσχυσης, μια δεδομένη βάση αυξάνεται στον βαθμό έκφρασης στον οποίο πραγματοποιείται η ενίσχυση. Στην περίπτωση αυτή, τα αθροίσματα των όρων μετατρέπονται σε γινόμενα παραγόντων.

Απόδειξη βασικών τύπων για λογάριθμους

Οι τύποι που σχετίζονται με τους λογάριθμους προκύπτουν από τύπους για εκθετικές συναρτήσεις και από τον ορισμό μιας αντίστροφης συνάρτησης.

Θεωρήστε την ιδιότητα της εκθετικής συνάρτησης
.
Επειτα
.
Ας εφαρμόσουμε την ιδιότητα της εκθετικής συνάρτησης
:
.

Ας αποδείξουμε τον τύπο αντικατάστασης βάσης.
;
.
Υποθέτοντας c = b, έχουμε:

Αντίστροφη συνάρτηση

Το αντίστροφο του λογάριθμου στη βάση του a είναι εκθετικη συναρτησημε εκθέτη α.

Αν τότε

Αν τότε

Παράγωγο λογάριθμου

Παράγωγος του λογάριθμου του συντελεστή x:
.
Παράγωγο νης τάξης:
.
Εξαγωγή τύπων > > >

Για να βρεθεί η παράγωγος ενός λογάριθμου, πρέπει να αναχθεί στη βάση μι.
;
.

Αναπόσπαστο

Το ολοκλήρωμα του λογάριθμου υπολογίζεται ολοκληρώνοντας κατά μέρη: .
Ετσι,

Εκφράσεις με χρήση μιγαδικών αριθμών

Θεωρήστε τη συνάρτηση μιγαδικού αριθμού z:
.
Ας εκφραστούμε μιγαδικός αριθμός zμέσω ενότητας rκαι επιχείρημα φ :
.
Στη συνέχεια, χρησιμοποιώντας τις ιδιότητες του λογάριθμου, έχουμε:
.
Ή

Ωστόσο, το επιχείρημα φ δεν ορίζεται μοναδικά. Αν βάλεις
, όπου n είναι ακέραιος,
τότε θα είναι ο ίδιος αριθμός για διαφορετικά n.

Επομένως, ο λογάριθμος, ως συνάρτηση μιγαδικής μεταβλητής, δεν είναι συνάρτηση μίας τιμής.

Επέκταση σειράς ισχύος

Όταν πραγματοποιείται η επέκταση:

Βιβλιογραφικές αναφορές:
ΣΕ. Bronstein, Κ.Α. Semendyaev, Εγχειρίδιο μαθηματικών για μηχανικούς και φοιτητές, "Lan", 2009.