Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

Метод наименьших квадратов

На заключительном уроке темы мы познакомимся с наиболее известным приложением ФНП , которое находит самое широкое применение в различных областях науки и практической деятельности. Это может быть физика, химия, биология, экономика, социология, психология и так далее, так далее. Волею судьбы мне часто приходится иметь дело с экономикой, и поэтому сегодня я оформлю вам путёвку в удивительную страну под названием Эконометрика =) …Как это не хотите?! Там очень хорошо – нужно только решиться! …Но вот то, что вы, наверное, определённо хотите – так это научиться решать задачи методом наименьших квадратов . И особо прилежные читатели научатся решать их не только безошибочно, но ещё и ОЧЕНЬ БЫСТРО;-) Но сначала общая постановка задачи + сопутствующий пример:

Пусть в некоторой предметной области исследуются показатели , которые имеют количественное выражение. При этом есть все основания полагать, что показатель зависит от показателя . Это полагание может быть как научной гипотезой, так и основываться на элементарном здравом смысле. Оставим, однако, науку в сторонке и исследуем более аппетитные области – а именно, продовольственные магазины. Обозначим через:

– торговую площадь продовольственного магазина, кв.м.,
– годовой товарооборот продовольственного магазина, млн. руб.

Совершенно понятно, что чем больше площадь магазина, тем в большинстве случаев будет больше его товарооборот.

Предположим, что после проведения наблюдений/опытов/подсчётов/танцев с бубном в нашем распоряжении оказываются числовые данные:

С гастрономами, думаю, всё понятно: – это площадь 1-го магазина, – его годовой товарооборот, – площадь 2-го магазина, – его годовой товарооборот и т.д. Кстати, совсем не обязательно иметь доступ к секретным материалам – довольно точную оценку товарооборота можно получить средствами математической статистики . Впрочем, не отвлекаемся, курс коммерческого шпионажа – он уже платный =)

Табличные данные также можно записать в виде точек и изобразить в привычной для нас декартовой системе .

Ответим на важный вопрос: сколько точек нужно для качественного исследования?

Чем больше, тем лучше. Минимально допустимый набор состоит из 5-6 точек. Кроме того, при небольшом количестве данных в выборку нельзя включать «аномальные» результаты. Так, например, небольшой элитный магазин может выручать на порядки больше «своих коллег», искажая тем самым общую закономерность, которую и требуется найти!



Если совсем просто – нам нужно подобрать функцию , график которой проходит как можно ближе к точкам . Такую функцию называют аппроксимирующей (аппроксимация – приближение) или теоретической функцией . Вообще говоря, тут сразу появляется очевидный «претендент» – многочлен высокой степени, график которого проходит через ВСЕ точки. Но этот вариант сложен, а зачастую и просто некорректен (т.к. график будет всё время «петлять» и плохо отражать главную тенденцию) .

Таким образом, разыскиваемая функция должна быть достаточно простА и в то же время отражать зависимость адекватно. Как вы догадываетесь, один из методов нахождения таких функций и называется методом наименьших квадратов . Сначала разберём его суть в общем виде. Пусть некоторая функция приближает экспериментальные данные :


Как оценить точность данного приближения? Вычислим и разности (отклонения) между экспериментальными и функциональными значениями (изучаем чертёж) . Первая мысль, которая приходит в голову – это оценить, насколько великА сумма , но проблема состоит в том, что разности могут быть и отрицательны (например, ) и отклонения в результате такого суммирования будут взаимоуничтожаться. Поэтому в качестве оценки точности приближения напрашивается принять сумму модулей отклонений:

или в свёрнутом виде: (вдруг кто не знает: – это значок суммы, а – вспомогательная переменная-«счётчик», которая принимает значения от 1 до ) .

Приближая экспериментальные точки различными функциями, мы будет получать разные значения , и очевидно, где эта сумма меньше – та функция и точнее.

Такой метод существует и называется он методом наименьших модулей . Однако на практике получил гораздо бОльшее распространение метод наименьших квадратов , в котором возможные отрицательные значения ликвидируются не модулем, а возведением отклонений в квадрат:



, после чего усилия направлены на подбор такой функции , чтобы сумма квадратов отклонений была как можно меньше. Собственно, отсюда и название метода.

И сейчас мы возвращаемся к другому важному моменту: как отмечалось выше, подбираемая функция должна быть достаточно простА – но ведь и таких функций тоже немало: линейная , гиперболическая , экспоненциальная , логарифмическая , квадратичная и т.д. И, конечно же, тут сразу бы хотелось «сократить поле деятельности». Какой класс функций выбрать для исследования? Примитивный, но эффективный приём:

– Проще всего изобразить точки на чертеже и проанализировать их расположение. Если они имеют тенденцию располагаться по прямой, то следует искать уравнение прямой с оптимальными значениями и . Иными словами, задача состоит в нахождении ТАКИХ коэффициентов – чтобы сумма квадратов отклонений была наименьшей.

Если же точки расположены, например, по гиперболе , то заведомо понятно, что линейная функция будет давать плохое приближение. В этом случае ищем наиболее «выгодные» коэффициенты для уравнения гиперболы – те, которые дают минимальную сумму квадратов .

А теперь обратите внимание, что в обоих случаях речь идёт о функции двух переменных , аргументами которой являются параметры разыскиваемых зависимостей :

И по существу нам требуется решить стандартную задачу – найти минимум функции двух переменных .

Вспомним про наш пример: предположим, что «магазинные» точки имеют тенденцию располагаться по прямой линии и есть все основания полагать наличие линейной зависимости товарооборота от торговой площади. Найдём ТАКИЕ коэффициенты «а» и «бэ», чтобы сумма квадратов отклонений была наименьшей. Всё как обычно – сначала частные производные 1-го порядка . Согласно правилу линейности дифференцировать можно прямо под значком суммы:

Если хотите использовать данную информацию для реферата или курсовика – буду очень благодарен за поставленную ссылку в списке источников, такие подробные выкладки найдёте мало где:

Составим стандартную систему:

Сокращаем каждое уравнение на «двойку» и, кроме того, «разваливаем» суммы:

Примечание : самостоятельно проанализируйте, почему «а» и «бэ» можно вынести за значок суммы. Кстати, формально это можно проделать и с суммой

Перепишем систему в «прикладном» виде:

после чего начинает прорисовываться алгоритм решения нашей задачи:

Координаты точек мы знаем? Знаем. Суммы найти можем? Легко. Составляем простейшуюсистему двух линейных уравнений с двумя неизвестными («а» и «бэ»). Систему решаем, например, методом Крамера , в результате чего получаем стационарную точку . Проверяя достаточное условие экстремума , можно убедиться, что в данной точке функция достигает именно минимума . Проверка сопряжена с дополнительными выкладками и поэтому оставим её за кадром (при необходимости недостающий кадр можно посмотреть здесь ) . Делаем окончательный вывод:

Функция наилучшим образом (по крайне мере, по сравнению с любой другой линейной функцией) приближает экспериментальные точки . Грубо говоря, её график проходит максимально близко к этим точкам. В традициях эконометрики полученную аппроксимирующую функцию также называют уравнением пАрной линейной регрессии .

Рассматриваемая задача имеет большое практическое значение. В ситуации с нашим примером, уравнение позволяет прогнозировать, какой товарооборот («игрек») будет у магазина при том или ином значении торговой площади (том или ином значении «икс») . Да, полученный прогноз будет лишь прогнозом, но во многих случаях он окажется достаточно точным.

Я разберу всего лишь одну задачу с «реальными» числами, поскольку никаких трудностей в ней нет – все вычисления на уровне школьной программы 7-8 класса. В 95 процентов случаев вам будет предложено отыскать как раз линейную функцию, но в самом конце статьи я покажу, что ничуть не сложнее отыскать уравнения оптимальной гиперболы, экспоненты и некоторых других функций.

По сути, осталось раздать обещанные плюшки – чтобы вы научились решать такие примеры не только безошибочно, но ещё и быстро. Внимательно изучаем стандарт:

Задача

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические (опытные) данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции . Найти сумму квадратов отклонений между эмпирическими и теоретическими значениями. Выяснить, будет ли функция лучше (с точки зрения метода наименьших квадратов) приближать экспериментальные точки.

Заметьте, что «иксовые» значения – натуральные, и это имеет характерный содержательный смысл, о котором я расскажу чуть позже; но они, разумеется, могут быть и дробными. Кроме того, в зависимости от содержания той или иной задачи как «иксовые», так и «игрековые» значения полностью или частично могут быть отрицательными. Ну а у нас дана «безликая» задача, и мы начинаем её решение :

Коэффициенты оптимальной функции найдём как решение системы:

В целях более компактной записи переменную-«счётчик» можно опустить, поскольку и так понятно, что суммирование осуществляется от 1 до .

Расчёт нужных сумм удобнее оформить в табличном виде:


Вычисления можно провести на микрокалькуляторе, но гораздо лучше использовать Эксель – и быстрее, и без ошибок; смотрим короткий видеоролик:

Таким образом, получаем следующую систему :

Тут можно умножить второе уравнение на 3 и из 1-го уравнения почленно вычесть 2-е . Но это везение – на практике системы чаще не подарочны, и в таких случаях спасает метод Крамера :
, значит, система имеет единственное решение.

Выполним проверку. Понимаю, что не хочется, но зачем же пропускать ошибки там, где их можно стопроцентно не пропустить? Подставим найденное решение в левую часть каждого уравнения системы:

Получены правые части соответствующих уравнений, значит, система решена правильно.

Таким образом, искомая аппроксимирующая функция: – из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

В отличие от прямой зависимости товарооборота магазина от его площади, найденная зависимость является обратной (принцип «чем больше – тем меньше») , и этот факт сразу выявляется по отрицательному угловому коэффициенту . Функция сообщает нам о том, что с увеличение некоего показателя на 1 единицу значение зависимого показателя уменьшается в среднем на 0,65 единиц. Как говорится, чем выше цена на гречку, тем меньше её продано.

Для построения графика аппроксимирующей функции найдём два её значения:

и выполним чертёж:

Построенная прямая называется линией тренда (а именно – линией линейного тренда, т.е. в общем случае тренд – это не обязательно прямая линия) . Всем знакомо выражение «быть в тренде», и, думаю, что этот термин не нуждается в дополнительных комментариях.

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически – это сумма квадратов длин «малиновых» отрезков (два из которых настолько малы, что их даже не видно) .

Вычисления сведём в таблицу:


Их можно опять же провести вручную, на всякий случай приведу пример для 1-й точки:

но намного эффективнее поступить уже известным образом:

Еще раз повторим: в чём смысл полученного результата? Из всех линейных функций у функции показатель является наименьшим, то есть в своём семействе это наилучшее приближение. И здесь, кстати, не случаен заключительный вопрос задачи: а вдруг предложенная экспоненциальная функция будет лучше приближать экспериментальные точки?

Найдем соответствующую сумму квадратов отклонений – чтобы различать, я обозначу их буквой «эпсилон». Техника точно такая же:

И снова на всякий пожарный вычисления для 1-й точки:

В Экселе пользуемся стандартной функцией EXP (синтаксис можно посмотреть в экселевской Справке) .

Вывод : , значит, экспоненциальная функция приближает экспериментальные точки хуже, чем прямая .

Но тут следует отметить, что «хуже» – это ещё не значит , что плохо. Сейчас построил график этой экспоненциальной функции – и он тоже проходит близко к точкам – да так, что без аналитического исследования и сказать трудно, какая функция точнее.

На этом решение закончено, и я возвращаюсь к вопросу о натуральных значениях аргумента. В различных исследованиях, как правило, экономических или социологических, натуральными «иксами» нумеруют месяцы, годы или иные равные временнЫе промежутки. Рассмотрим, например, такую задачу:

Имеются следующие данные о розничном товарообороте магазина за первое полугодие:

Используя аналитическое выравнивание по прямой, определите объем товарооборота за июль .

Да без проблем: нумеруем месяцы 1, 2, 3, 4, 5, 6 и используем обычный алгоритм, в результате чего получаем уравнение – единственное, когда речь идёт о времени, то обычно используют букву «тэ» (хотя это не критично) . Полученное уравнение показывает, что в первом полугодии товарооборот увеличивался в среднем на 27,74 д.е. за месяц. Получим прогноз на июль (месяц №7) : д.е.

И подобных задач – тьма тьмущая. Желающие могут воспользоваться дополнительным сервисом, а именно моим экселевским калькулятором (демо-версия) , который решает разобранную задачу практически мгновенно! Рабочая версия программы доступна по обмену или за символическую плaтy .

В заключение урока краткая информация о нахождение зависимостей некоторых других видов. Собственно, и рассказывать-то особо нечего, поскольку принципиальный подход и алгоритм решения остаются прежними.

Предположим, что расположение экспериментальных точек напоминает гиперболу. Тогда чтобы отыскать коэффициенты наилучшей гиперболы , нужно найти минимум функции – желающие могут провести подробные вычисления и прийти к похожей системе:

С формально-технической точки зрения она получается из «линейной» системы (обозначим её «звёздочкой») заменой «икса» на . Ну а уж суммы-то рассчитаете, после чего до оптимальных коэффициентов «а» и «бэ» рукой подать .

Если есть все основания полагать, что точки располагаются по логарифмической кривой , то для розыска оптимальных значений и находим минимум функции . Формально в системе (*) нужно заменить на :

При вычислениях в Экселе используйте функцию LN . ПризнАюсь, мне не составит особого труда создать калькуляторы для каждого из рассматриваемых случаев, но всё-таки будет лучше, если вы сами «запрограммируете» вычисления. Видеоматериалы урока в помощь.

С экспоненциальной зависимостью ситуация чуть сложнее. Чтобы свести дело к линейному случаю, прологарифмируем функцию и воспользуемся свойствам логарифма :

Теперь, сопоставляя полученную функцию с линейной функцией , приходим к выводу, что в системе (*) нужно заменить на , а – на . Для удобства обозначим :

Обратите внимание, что система разрешается относительно и , и поэтому после нахождения корней нужно не забыть найти сам коэффициент .

Чтобы приблизить экспериментальные точки оптимальной параболой , следует найти минимум функции трёх переменных . После осуществления стандартных действий получаем следующую «рабочую» систему :

Да, конечно, сумм здесь побольше, но при использовании любимого приложения трудностей вообще никаких. И напоследок расскажу, как с помощью Экселя быстро выполнить проверку и построить нужную линию тренда: создаём точечную диаграмму, выделяем мышью любую из точек и через правый щелчок выбираем опцию «Добавить линию тренда» . Далее выбираем тип диаграммы и на вкладке «Параметры» активируем опцию «Показывать уравнение на диаграмме» . ОК

Как всегда статью хочется завершить какой-нибудь красивой фразой, и я уже чуть было не напечатал «Будьте в тренде!». Но вовремя передумал. И не из-за того, что она шаблонна. Не знаю, кому как, а мне что-то совсем не хочется следовать пропагандируемому американскому и в особенности европейскому тренду =) Поэтому я пожелаю каждому из вас придерживаться своей собственной линии!

http://www.grandars.ru/student/vysshaya-matematika/metod-naimenshih-kvadratov.html

Метод наименьших квадратов является одним из наиболее распространенных и наиболее разработанных вследствие своей простоты и эффективности методов оценки параметров линейныхэконометрических моделей . Вместе с тем, при его применении следует соблюдать определенную осторожность, поскольку построенные с его использованием модели могут не удовлетворять целому ряду требований к качеству их параметров и, вследствие этого, недостаточно “хорошо” отображать закономерности развития процесса .

Рассмотрим процедуру оценки параметров линейной эконометрической модели с помощью метода наименьших квадратов более подробно. Такая модель в общем виде может быть представлена уравнением (1.2):

y t = a 0 + a 1 х 1t +...+ a n х nt + ε t .

Исходными данными при оценке параметров a 0 , a 1 ,..., a n является вектор значений зависимой переменной y = (y 1 , y 2 , ... , y T)" и матрица значений независимых переменных

в которой первый столбец, состоящий из единиц, соответствует коэффициенту модели .

Название свое метод наименьших квадратов получил, исходя из основного принципа, которому должны удовлетворять полученные на его основе оценки параметров: сумма квадратов ошибки модели должна быть минимальной.

Примеры решения задач методом наименьших квадратов

Пример 2.1. Торговое предприятие имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в табл. 2.1.

Руководство предприятия хотело бы знать, как зависит размер годового товарооборота от торговой площади магазина.

Таблица 2.1

Номер магазина Годовой товарооборот, млн руб. Торговая площадь, тыс. м 2
19,76 0,24
38,09 0,31
40,95 0,55
41,08 0,48
56,29 0,78
68,51 0,98
75,01 0,94
89,05 1,21
91,13 1,29
91,26 1,12
99,84 1,29
108,55 1,49

Решение методом наименьших квадратов. Обозначим - годовой товарооборот -го магазина, млн руб.; - торговая площадь -го магазина, тыс. м 2 .

Рис.2.1. Диаграмма рассеяния для примера 2.1

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.1).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от торговой площади (т.е. у будет расти с ростом ). Наиболее подходящая форма функциональной связи - линейная .

Информация для проведения дальнейших расчетов представлена в табл. 2.2. С помощью метода наименьших квадратов оценим параметры линейной однофакторной эконометрической модели

Таблица 2.2

t y t x 1t y t 2 x 1t 2 x 1t y t
19,76 0,24 390,4576 0,0576 4,7424
38,09 0,31 1450,8481 0,0961 11,8079
40,95 0,55 1676,9025 0,3025 22,5225
41,08 0,48 1687,5664 0,2304 19,7184
56,29 0,78 3168,5641 0,6084 43,9062
68,51 0,98 4693,6201 0,9604 67,1398
75,01 0,94 5626,5001 0,8836 70,5094
89,05 1,21 7929,9025 1,4641 107,7505
91,13 1,29 8304,6769 1,6641 117,5577
91,26 1,12 8328,3876 1,2544 102,2112
99,84 1,29 9968,0256 1,6641 128,7936
108,55 1,49 11783,1025 2,2201 161,7395
S 819,52 10,68 65008,554 11,4058 858,3991
Среднее 68,29 0,89

Таким образом,

Cледовательно, при увеличении торговой площади на 1 тыс. м 2 при прочих равных условиях среднегодовой товарооборот увеличивается на 67,8871 млн руб.

Пример 2.2. Руководство предприятия заметило, что годовой товарооборот зависит не только от торговой площади магазина (см. пример 2.1), но и от среднего числа посетителей. Соответствующая информация представлена в табл. 2.3.

Таблица 2.3

Решение. Обозначим - среднее число посетителей -го магазина в день, тыс. чел.

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.2).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от среднего числа посетителей в день (т.е. у будет расти с ростом ). Форма функциональной зависимости - линейная.

Рис. 2.2. Диаграмма рассеяния для примера 2.2

Таблица 2.4

t x 2t x 2t 2 y t x 2t x 1t x 2t
8,25 68,0625 163,02 1,98
10,24 104,8575 390,0416 3,1744
9,31 86,6761 381,2445 5,1205
11,01 121,2201 452,2908 5,2848
8,54 72,9316 480,7166 6,6612
7,51 56,4001 514,5101 7,3598
12,36 152,7696 927,1236 11,6184
10,81 116,8561 962,6305 13,0801
9,89 97,8121 901,2757 12,7581
13,72 188,2384 1252,0872 15,3664
12,27 150,5529 1225,0368 15,8283
13,92 193,7664 1511,016 20,7408
S 127,83 1410,44 9160,9934 118,9728
Cреднее 10,65

В целом необходимо определить параметры двухфакторной эконометрической модели

у t = a 0 + a 1 х 1t + a 2 х 2t + ε t

Информация, требующаяся для дальнейших расчетов, представлена в табл. 2.4.

Оценим параметры линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов.

Таким образом,

Оценка коэффициента =61,6583 показывает, что при прочих равных условиях с увеличением торговой площади на 1 тыс. м 2 годовой товарооборот увеличится в среднем на 61,6583 млн руб.

Оценка коэффициента = 2,2748 показывает, что при прочих равных условиях с увеличением среднего числа посетителей на 1 тыс. чел. в день годовой товарооборот увеличится в среднем на 2,2748 млн руб.

Пример 2.3. Используя информацию, представленную в табл. 2.2 и 2.4, оценить параметр однофакторной эконометрической модели

где - центрированное значение годового товарооборота -го магазина, млн руб.; - центрированное значение среднедневного числа посетителей t-го магазина, тыс. чел. (см. примеры 2.1-2.2).

Решение. Дополнительная информация, необходимая для расчетов, представлена в табл. 2.5.

Таблица 2.5

-48,53 -2,40 5,7720 116,6013
-30,20 -0,41 0,1702 12,4589
-27,34 -1,34 1,8023 36,7084
-27,21 0,36 0,1278 -9,7288
-12,00 -2,11 4,4627 25,3570
0,22 -3,14 9,8753 -0,6809
6,72 1,71 2,9156 11,4687
20,76 0,16 0,0348 3,2992
22,84 -0,76 0,5814 -17,413
22,97 3,07 9,4096 70,4503
31,55 1,62 2,6163 51,0267
40,26 3,27 10,6766 131,5387
Cумма 48,4344 431,0566

Используя формулу (2.35), получим

Таким образом,

http://www.cleverstudents.ru/articles/mnk.html

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Дифференциал второго порядка имеет вид:

То есть

Следовательно, матрица квадратичной формы имеет вид

причем значения элементов не зависят от а и b .

Покажем, что матрица положительно определенная. Для этого нужно, чтобы угловые миноры были положительными.

Угловой минор первого порядка . Неравенство строгое, так как точки

Находит широкое применение в эконометрике в виде четкой экономической интерпретации ее параметров.

Линейная регрессия сводится к нахождению уравнения вида

или

Уравнение вида позволяет по заданным значениям параметра х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х .

Построение линейной регрессии сводится к оценке ее параметров — а и в. Оценки параметров линейной регрессии могут быть найдены разными методами.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и в, при которых сумма квадратов отклонений фактических значений ре-зультативного признака (у) от расчетных (теоретических) ми-нимальна:

Чтобы найти минимум функции, надо вычислить част-ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S, тогда:

Преобразуя формулу, получим следующую систему нормальных уравнений для оценки параметров а и в :

Решая систему нормальных уравнений (3.5) либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров а и в.

Параметр в называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находится в границах: -1 1.

Для оценки качества подбора линейной функции рассчитывается квадрат

Линейного коэффициента корреляции называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Соответственно величина 1 - характеризует долю диспер-сии у, вызванную влиянием остальных не учтенных в модели факторов.

Вопросы для самоконтроля

1. Суть метода наименьших квадратов?

2. Сколькими переменными предоставляется парная регрессия?

3. Каким коэффициентом определяется теснота связи между переменами?

4. В каких пределах определяется коэффициент детерминации?

5. Оценка параметра b в корреляционно-регрессионном анализе?

1. Кристофер Доугерти. Введение в эконометрию. - М.: ИНФРА - М, 2001 - 402 с.

2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.


3. Р.У. Рахметова Краткий курс по эконометрике. Учебное пособие. Алматы. 2004. -78с.

4. И.И. Елисеева.Эконометрика. - М.: «Финансы и статистика»,2002

5. Ежемесячный информационно-аналитический журнал.

Нелинейные экономические модели. Нелинейные модели регрессии. Преобразование переменных.

Нелинейные экономические модели..

Преобразование переменных.

Коэффициент эластичности.

Если между экономическими явлениями существуют нели-нейные соотношения, то они выражаются с помощью соответ-ствующих нелинейных функций: например, равносторонней ги-перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы различных степеней - , ;

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы.

Если фактор не оказывает влияния на результат, то линия регрес-сии на графике параллельна оси ох и

Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный вли-янием фактора х , т. е. регрессией у по х, так и вызванный действием прочих причин (необъясненная вариация). Пригод-ность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариа-цию

Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у.

, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых откло-нений из п

Оценка значимости уравнения регрессии в целом дается с по-мощью F -критерия Фишера. При этом выдвигается нулевая ги-потеза, что коэффициент регрессии равен нулю, т. е. b = 0, и следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложе-ние общей суммы квадратов отклонений переменной у от средне го значения у на две части - «объясненную» и «необъясненную»:

- общая сумма квадратов отклонений;

- сумма квадратов отклонения объясненная регрессией;

- остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе-ней свободы, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло-нений из п возможных требуется для образования данной суммы квадратов.

Дисперсия на одну степень свободы D .

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива , то факторная и остаточная дисперсии не отличаются друг от друга. Для Н 0 необходимо опровержение,чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором раз-работаны таблицы критических значений F -отношений при разных уровняхсущественности нулевой гипотезы и различном числе степенейсвободы. Табличное значение F -критерия — это максимальная величина отношения дисперсий, которая может иметь место прислучайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F -отношения признается достоверным, если о больше табличного.

В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: F факт > F табл Н 0 отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл , то вероятность нулевой гипотезы выше заданного уровня и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Н о не отклоняется.

Стандартная ошибка коэффициента регрессии

Для оценки существенности коэффициента регрессии его ве-личина сравнивается с его стандартной ошибкой, т. е. определяется фактическое значение t -критерия Стьюдентa: которое затем сравнивается с табличным значением при определенном уровне значимости и числе степеней свободы (n - 2).

Стандартная ошибка параметра а :

Значимость линейного коэффициента корреляции проверя-ется на основе величины ошибки коэффициента корреляции т r:

Общая дисперсия признака х :

Множественная линейная регрессия

Построение модели

Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида

Регрессия может дать хороший результат при модели-ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи-ческих переменных контролировать нельзя, т. е. не удается обес-печить равенство всех прочих условий для оценки влияния одно-го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост-роить уравнение множественной регрессии: y = a+b 1 x 1 +b 2 +…+b p x p + .

Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак-торов и выбор вида уравнения регрессии

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов. Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение.

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Основная сфера применения таких полиномов - обработка экспериментальных данных (построение эмпирических формул). Дело в том, что интерполяционный полином, построенный по значениям функции, полученным с помощью эксперимента, будет испытывать сильное влияние "экспериментального шума", к тому же при интерполировании узлы интерполяции не могут повторяться, т.е. нельзя использовать результаты повторных экспериментов при одинаковых условиях. Среднеквадратичный же полином сглаживает шумы и позволяет использовать результаты многократных экспериментов.

Численное интегрирование и дифференцирование. Пример.

Численное интегрирование – вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.

Численное дифференцирование – совокупность методов вычисления значения производной дискретно заданной функции.

Интегрирование

Постановка задачи. Математическая постановка задачи: необходимо найти значение определенного интеграла

где a, b - конечны, f(x) - непрерывна на [а, b].

При решении практических задач часто бывает, что интеграл неудобно или невозможно взять аналитически: он может не выражаться в элементарных функциях, подынтегральная функция может быть задана в виде таблицы и пр. В таких случаях применяют методы численного интегрирования. Численные методы интегрирования используют замену площади криволинейной трапеции на конечную сумму площадей более простых геометрических фигур, которые могут быть вычислены точно. В этом смысле говорят об использовании квадратурных формул.

В большинстве методов используется представление интеграла в виде конечной суммы (квадратурная формула):

В основе квадратурных формул лежит идея замена на отрезке интегрирования графика подынтегрального выражения функциями более простого вида, которые легко могут быть проинтегрированы аналитически и, таким образом, легко вычислены. Наиболее просто задача построения квадратурных формул реализуется для полиномиальных математических моделей.

Можно выделить три группы методов:

1. Метод с разбиением отрезка интегрирования на равные интервалы. Разбиение на интервалы производится заранее, обычно интервалы выбираются равными (чтобы легче было вычислить функцию на концах интервалов). Вычисляют площади и суммируют их (методы прямоугольников, трапеции, Симпсона).

2. Методы с разбиением отрезка интегрирования с помощью специальных точек (метод Гаусса).

3. Вычисление интегралов с помощью случайных чисел (метод Монте-Карло).

Метод прямоугольников. Пусть функцию (рисунок) необходимо проинтегрировать численным методом на отрезке . Разделим отрезок на N равных интервалов. Площадь каждой из N криволинейных трапеций можно заменить на площадь прямоугольника.

Ширина всех прямоугольников одинакова и равна:

В качестве выбора высоты прямоугольников можно выбрать значение функции на левой границе. В этом случае высота первого прямоугольника составит f(a), второго – f(x 1),…, N-f(N-1).

Если в качестве выбора высоты прямоугольника взять значение функции на правой границе, то в этом случае высота первого прямоугольника составит f(x 1), второго – f(x 2), …, N – f(x N).

Как видно, в этом случае одна из формул дает приближение к интегралу с избытком, а вторая с недостатком. Существует еще один способ – использовать для аппроксимации значение функции в середине отрезка интегрирования:

Оценка абсолютной погрешности метода прямоугольников (середина)

Оценка абсолютной погрешности методов левых и правых прямоугольников.

Пример. Вычислить для всего интервала и с делением интервала на четыре участка

Решение. Аналитическое вычисление данного интеграла дает I=агсtg(1)–агсtg(0)=0,7853981634. В нашем случае:

1)h = 1; xо = 0; x1 = 1;

2) h = 0,25 (1/4); x0 = 0; x1 = 0,25; x2 = 0,5; х3 = 0,75; x4 = 1;

Вычислим методом левых прямоугольников:

Вычислим методом правых прямоугольников:

Вычислим методом средних прямоугольников:

Метод трапеций. Использование для интерполяции полинома первой степени (прямая линия, проведенная через две точки) приводит к формуле трапеций. В качестве узлов интерполирования берутся концы отрезка интегрирования. Таким образом, криволинейная трапеция заменяется на обычную трапецию, площадь которой может быть найдена как произведение полусуммы оснований на высоту

В случае N отрезков интегрирования для всех узлов, за исключением крайних точек отрезка, значение функции войдет в общую сумму дважды (так как соседние трапеции имеют одну общую сторону)

Формула трапеции может быть получена, если взять половину суммы формул прямоугольников по правому и левому краям отрезка:

Проверка устойчивости решения. Как правило, чем меньше длина каждого интервала, т.е. чем больше число этих интервалов, тем меньше различаются приближенное и точное значение интеграла. Это справедливо для большинства функций. В методе трапеций ошибка вычисления интеграла ϭ приблизительно пропорциональна квадрату шага интегрирования (ϭ ~ h 2).Таким образом, для вычисления интеграла некоторой функции в переделах a,b необходимо разделить отрезок на N 0 интервалов и найти сумму площадей трапеции. Затем нужно увеличить число интервалов N 1 , опять вычислить сумму трапеции и сравнить полученное значение с предыдущим результатом. Это следует повторять до тех пор (N i), пока не будет достигнута заданная точность результата (критерий сходимости).

Для методов прямоугольников и трапеции обычно на каждом шаге итерации число интервалов увеличивается в 2 раза (N i +1 =2N i).

Критерий сходимости:

Главное преимущество правила трапеций – его простота. Однако если при вычислении интеграла требуется высокая точность, применение этого метода может потребовать слишком большого количества итераций.

Абсолютная погрешность метода трапеций оценивается как
.

Пример. Вычислить приближенно определенный интеграл по формуле трапеций.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: .

Таким образом, общая формула трапеций сокращается до приятных размеров:

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади.

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Если взять еще больше отрезком => будет еще точнее.

Формула Симпсона. Формула трапеции дает результат, сильно зависящий от величины шага h, что сказывается на точности вычисления определенного интеграла особенно в тех случаях, когда функция имеет немонотонный характер. Можно предположить повышение точности вычислений, если вместо отрезков прямых, заменяющих криволинейные фрагменты графика функции f(x), использовать, например, фрагменты парабол, приводимых через три соседние точки графика. Подобная геометрическая интерпретация лежит в основе метода Симпсона для вычисления определенного интеграла. Весь интервал интегрирования a,b разбивается N отрезков, длина отрезка также будет равна h=(b-a)/N.

Формула Симпсона имеет вид:

остаточный член

С увеличением длины отрезков точность формулы падает, поэтому для увеличения точности применяют составную формулу Симпсона. Весь интервал интегрирования разбивается на четное число одинаковых отрезков N, длина отрезка также будет равна h=(b-a)/N. Составная формула Симпсона имеет вид:

В формуле выражения в скобках представляют собой суммы значений подынтегральной функции соответственно на концах нечетных и четных внутренних отрезков.

Остаточный член формулы Симпсона пропорционален уже четвертой степени шага:

Пример: Пользуясь правилом Симпсона вычислить интеграл . (Точное решение - 0,2)

Метод Гаусса

Квадратурная формула Гаусса . Основной принцип квадратурных формул второй разновидности виден из рисунка 1.12: необходимо так разместить точки х 0 и х 1 внутри отрезка [a ;b ], чтобы площади "треугольников" в сумме были равны площади "сегмента". При использовании формулы Гаусса исходный отрезок [a ;b ] сводится к отрезку [-1;1] заменой переменной х на

0.5∙(b a )∙t + 0.5∙(b + a ).

Тогда , где .

Такая замена возможна, если a и b конечны, а функция f (x ) непрерывна на [a ;b ]. Формула Гаусса при n точках x i , i =0,1,..,n -1 внутри отрезка [a ;b ]:

, (1.27)

где t i и A i для различных n приводятся в справочниках. Например, при n =2 A 0 =A 1 =1; при n =3: t 0 =t 2 »0.775, t 1 =0, A 0 =A 2 »0.555, A 1 »0.889.

Квадратурная формула Гаусса

получена с весовой функцией равной единице p(x)= 1 и узлами x i , являющимися корнями полиномов Лежандра

Коэффициенты A i легко вычисляются по формулам

i =0,1,2,...n .

Значения узлов и коэффициентов для n=2,3,4,5 приведены в таблице

Порядок Узлы Коэффициенты
n =2 x 1 =0 x 0 = -x 2 =0.7745966692 A 1 =8/9 A 0 =A 2 =5/9
n =3 x 2 = -x 1 =0.3399810436 x 3 = -x 0 =0.8611363116 A 1 =A 2 =0.6521451549 A 0 =A 3 =0.6521451549
n=4 x 2 = 0 x 3 = -x 1 = 0.5384693101 x 4 =-x 0 =0.9061798459 A 0 =0.568888899 A 3 =A 1 =0.4786286705 A 0 =A 4 =0.2869268851
n =5 x 5 = -x 0 =0.9324695142 x 4 = -x 1 =0.6612093865 x 3 = -x 2 =0.2386191861 A 5 =A 0 =0.1713244924 A 4 =A 1 =0.3607615730 A 3 =A 2 =0.4679139346

Пример. Вычислить значение по формуле Гаусса для n =2:

Точное значение: .

Алгоритм вычисления интеграла по формуле Гаусса предусматривает не удвоение числа микроотрезков, а увеличение числа ординат на 1 и сравнение полученных значений интеграла. Преимущество формулы Гаусса – высокая точность при сравнительно малом числе ординат. Недостатки: неудобна при расчетах вручную; необходимо держать в памяти ЭВМ значения t i , A i для различных n .

Погрешность квадратурной формулы Гаусса на отрезке будет при этом Для формула остаточного члена будет причем коэффициент α N быстро убывает с ростом N . Здесь

Формулы Гаусса обеспечивают высокую точность уже при небольшом количестве узлов (от 4 до 10) В этом случае В практических же вычислениях число узлов составляет от нескольких сотен до нескольких тысяч. Отметим также, что веса квадратур Гаусса всегда положительны, что обеспечивает устойчивость алгоритма вычисления сумм

Дифференцирование. При решении задач часто бывает необходимо найти производную определенного порядка от функции f(x), заданной таблично. Кроме того, иногда в силу сложности аналитического выражения функции f(x) ее непосредственное дифференцирование слишком затрудненно, а также при численном решении дифференциальных уравнений. В этих случаях используют численное дифференцирование.

3.5. Метод наименьших квадратов

Первая работа, в которой заложены основы метода наименьших квадратов,была выполнена Лежандром в 1805. В статье «Новые методы определения орбит комет», он писал: «После того, как полностью использованы все условия задачи, необходимо определить коэффициенты так, чтобы величины их ошибок были наименьшими из возможных. Наиболее простым путем достижения этого является метод, который состоитв отыскании минимума суммы квадратов ошибок».В настоящее время методприменяетсявесьма широкопри аппроксимации неизвестных функциональных зависимостей, задаваемых множеством экспериментальных отсчетов, с целью полученияаналитического выражения,наилучшим образом приближенного к натурному эксперименту.

Пусть на основании эксперимента требуется установить функциональнуюзависимость величины y от величины x : .Ипусть в результате эксперимента получено n значений y при соответствующих значениях аргумента x . Если экспериментальные точки расположены на координатной плоскости так, как на рисунке, то, зная, что при проведении эксперимента имеют место погрешности,можно предположить, что зависимость носит линейный характер, т.е. y = ax + b .Отметим, что метод не накладывает ограничений на вид функции, т.е. его можно применятьк любым функциональным зависимостям.

С точки зрения экспериментаторачасто более естественно считать, что последовательность взятия отсчетов фиксирована заранее, т.е. является независимой переменной, аотсчеты - зависимой переменной.Это особенно ясно видно, еслипод понимаютсямоменты времени, что наиболее широко имеет местов технических приложениях.Но это лишь весьма распространенный частный случай. Например, необходимо провести классификацию некоторых образцов по размеру. Тогда независимой переменной будет номер образца, зависимой – его индивидуальный размер.

Метод наименьших квадратов детально описан во множестве учебных и научных изданий, особенно в части аппроксимации функцийв электро-и радиотехнике, а также в книгах по теории вероятностей и математической статистике.

Вернемсяк рисунку. Пунктирные линии показывают, чтопогрешности могут возникать не только из-занесовершенства измерительных процедур, но и по причине неточности задания независимой переменной.При выбранном виде функции остается подобрать входящие в нее параметры a и b .Понятно, что количество параметровможет быть больше двух, что характерно только для линейных функций.В общем виде будем считать

.(1)

Требуется выбрать коэффициенты a , b , c … так, чтобывыполнилось условие

. (2)

Найдем значения a , b , c …, обращающие левую часть (2) в минимум. Для этого определим стационарные точки (точки, вкоторых первая производная обращается в нуль)путем дифференцирования левой части (2)по a , b , c :

(3)

и т.д.Полученная система уравнений содержит столько жеуравнений, сколько неизвестных a , b , c …. Решить такую систему в общем виде нельзя, поэтому необходимо задаться,хотя бы ориентировочно,конкретным видом функции .Далее рассмотрим два случая:линейной и квадратичной функций.

Линейнаяфункция .

Рассмотрим сумму квадратов разностей экспериментальных значений и значений функции в соответствующих точках:

(4)

Подберем параметры a и b так, чтобы эта сумма имела наименьшее значение. Таким образом, задачасводится к нахождению значений a и b , при которых функция имеет минимум, т.е.к исследованию функции двух независимых переменных a и b на минимум. Для этого продифференцируем по a и b :

;

.


Или

(5)

Подставив экспериментальные данные и , получим систему двух линейных уравнений с двумя неизвестными a и b . Решив эту систему, мы сможем записать функцию .

Убедимся, что при найденных значениях a и b имеет минимум. Для этого найдем , и :

, , .

Следовательно,

− = ,

>0,

т.е. выполнено достаточное условие минимума для функции двух переменных.

Квадратичная функция .

Пусть в эксперименте получены значения функции в точках . Пусть также на основании априорных сведений имеется предположение, что функция является квадратичной:

.

Требуется найти коэффициенты a , b и c .Имеем

– функцию трех переменных a , b , c .

В этом случае система (3) принимает вид:

Или:

Решив эту систему линейных уравнений, определим неизвестные a , b , c .

Пример. Пусть на основании эксперимента получены четыре значения искомой функции y = (x ) при четырех значениях аргумента, которые приведены в таблице: