План.

Вариант №6.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

6. Приток напорных вод в совершенный колодец.

Введение.

Геология – комплекс наук о составе, строении. Истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.

В последние десятилетия особое развитие получила инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно-геологические (инженерно-геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.

Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и при эксплуатации сооружений. В современных условиях ни одно здание или сооружение не может быть спроектировано, построено и надежно эксплуатироваться без достоверных и полных инженерно-геологических материалов.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

Минерал – природное тело с определенным химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и являющееся составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия.

В земной коре содержится более 7000 минералов и их разновидностей. Большинство из них встречаются редко и лишь немногим более 100 минералов встречаются часто и в достаточно больших количествах, входят в состав тех или иных горных пород. Такие минералы называют породообразующими.

Происхождение минералов. Условия, в которых образуются минералы в природе, отличаются большим разнообразием и сложностью. Различают три основных процесса минералообразования: эндогенный, экзогенный и метаморфический.

Эндогенный процесс связан с внутренними силами Земли и проявляется в ее недрах. Минералы формируются из магмы – силикатного огненно-жидкого расплава. Таким путем образуются, например, кварц и различные силикаты. Эндогенные минералы обычно плотные,с большой твердостью, стойкие к воде, кислотам, щелочам.

Экзогенный процесс свойственен поверхности земной коры. При этом процессе минералы формируются на суше и в море. В первом случае их создание связано с процессом выветривания, т.е. разрушительным воздействием воды, кислорода, колебаний температуры на эндогенные минералы. Таким образом образуются глинистые минералы (гидрослюда, каолинит и др.), различные железистые соединения (сульфиды, оксиды химический осадков из водных растворов (галит, сильвин и др.). в экзогенном процессе ряд минералов образуется также за счет жизнедеятельности различных организмов (опал и др.).

Экзогенные минералы разнообразны по свойствам. В большинстве случаев они имеют низкую твердость, активно взаимодействуют с водой или растворяются в ней.

Метаморфический процесс. Под воздействием высоких температур и давлений, а также магматических газов и воды на некоторой глубине в земной коре происходит преобразование минералов, ранее образовавшихся в экзогенных процессах. Минералы изменяют свое первоначальное состояние, перекристаллизовываются, приобретают плотность, прочность. Так образуются многие минералы-силикаты (роговая обманка, актинолит и др.).

Классификация минералов. Существует много вариантов классификаций минералов. Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам.

Все минералы разделяют на 10 классов.

Силикаты – наиболее многочисленный класс, включающий до 800 минералов, являющихся основной частью большинства магматических и метаморфических пород. Среди силикатов выделяют группы минералов, характеризующиеся некоторой общностью состава и строения – полевые шпаты, пироксены, амфиболы, слюды, а также оливин, тальк, хлориты и глинистые минералы. Все они по своему составу алюмосиликаты.

Карбонаты. К ним относится более 80 минералов. Наиболее распространены кальцит, магнетизм, доломит. Происхождение в основном экзогенное и связано с водными растворами. В контакте с водой они немного снижают свою механическую прочность, хотя и слабо, но растворяются в воде, разрушаются в кислотах.

Оксиды и гидроксиды. Эти два класса объединяют около 200 минералов, на их долю приходится до 17% всей массы земной коры. Наибольшее распространение имеют кварц, опал и лимонит.

Сульфиды насчитывают до 200 минералов. Типичный представитель пирит. Сульфиды в зоне выветривания разрушаются, поэтому их примесь снижает качество строительных материалов.

Сульфаты. Этот класс объединяет до 260 минералов, происхождение которых связано с водными растворами. Характеризуются небольшой твердостью, светлой окраской. Сравнительно хорошо растворяются в воде. Наибольшее распространение имеют гипс и ангидрит. При соприкосновении с водой ангидрит переходит в гипс, увеличиваясь в объеме до 33%.

Галоиды содержат около 100 минералов. Происхождение связано в основном с водными растворами. Наибольшее распространение имеет галит. Может быть составной частью осадочных пород, легко растворяется в воде.

Минералы классов фосфатов, вольфраматов и самородных элементов встречаются гораздо реже, чем другие.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

Геологические данные говорят о том, что в древние времена оледенение Земли было значительным. На протяжении последних 500-600 тыс. лет на территории Европы насчитывают несколько больших оледенений. Ледники надвигались из района Скандинавии.

В настоящее время льды занимают 10% поверхности суши, 98,5% ледниковой поверхности приходится на полярные области и лишь 1,5% - на высокие горы. Различают три типа ледников: горные, плоскогорий и материковые.

Горные ледники образуются высоко в горах и располагаются либо на вершинах, либо в ущельях, впадинах, различных углублениях. Такие ледники имеются на Кавказе, Урале и т.д.

Лед образуется за счет перекристаллизации снега. Он обладает способностью к пластическому течению, образуя потоки в форме языков. Движение ледников вниз по склонам ограничивается высотой, где солнечного тепла оказывается достаточно для полного таяния льда. Для Кавказа, например, эта высота составляет на западе 2700 м, на востоке – 3600 м. Скорость движения горные ледников различна. На Кавказе, например, она составляет 0,03-0,35 м/сут, на Памире – 1-4 м/сут.

Ледники плоскогорий образуются в горах с плоскими вершинами. Лед залегает нераздельной сплошной массой. От него по ущельям спускаются ледники в виде языков. Такого типа ледник, в частности, располагается сейчас на Скандинавском полуострове.

Материковые ледники распространены в Гренландии, Шпицбергене, Антарктиде и других местах, где сейчас протекает современная эпоха оледенений. Льды залегают сплошным покровом, мощностью в тысячи метров.

Геологическая деятельность льда велика и обусловлена главным образом его движением, несмотря на то, что скорость течения льда примерно в 10000 раз медленнее, чем воды в реках при тех же условиях.

Строительные свойства ледниковых отложений. Моренные (грубые, неоднородные, неслоистые обломочные материалы) и флювиогляциальные (водно-ледниковые) отложения являются надежным основанием для сооружений различного типа. Валунные суглинки и глины, испытавшие на себе давление мощных толщ льда, находятся в плотном состоянии и в ряде случаев даже переуплотнены. Пористость валунные суглинков не превышает 25-30%. На валунных суглинках и глинах здания и сооружения испытывают малую осадку. Эти грунты слабоводопроницаемы и часто служат водоупором для подземных вод.

Такими высокими прочностными свойствами обладают практически все разновидности отложений морен.

Флювиогляциальные отложения со строительной точки зрения хотя и уступают моренным глинистым грунтам по прочности, но являются надежным основанием. Для этого успешно используют различные песчано-гравелистые и глинистые отложения озов и зандров. Некоторое исключение составляют покровные суглинки и ленточные глины. Покровные суглинки легко размокают. Ленточные глины достаточно плотны, слабо водопроницаемы, но могут в условиях насыщения водой быть текучими.

Ледниковые отложения успешно используют как строительный материал (камень, пески, глины); пески озов, камов и зандров пригодны для возведения насыпей и для изготовления бетона. Валуны хороший строительный камень. Имеются примеры использования валунов для изготовления монолитных пьедесталов памятников.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

Основной задачей инженерно-геологических исследований для промышленного и гражданского строительства является получение информации о инженерно-геологических условиях территории, к которым относятся: рельеф, породы и их свойства, подземные воды, геологические и инженерно-геологические процессы и явления, а также прогноз изменения этих условий под влиянием инженерной деятельности человека.

Инженерно-геологические исследования проводятся последовательно,

в соответствии со стадией проектирования. Детальность исследований возрастает при переходе от одной стадии к другой, изменяются и методы инженерно-геологических исследований.

На начальной стадии инженерных изысканий основным видом инженерно-геологических исследований является инженерно-геологическая съемка, позволяющая в сжатые сроки и при небольших затратах средств оценить инженерно-геологические условия.

При инженерно-геологической съемке на изучаемой территории выделяют, изучают и прослеживают породы, условия залегания их, рельеф, подземные воды, геологические и инженерно-геологические процессы и изображают их на инженерно-геологической карте.

Важно уяснить, что состав и объем инженерно-геологических исследований зависит от сложности инженерно-геологических условий, стадии проектирования, степени изученности района и других факторов.

Следует обратить внимание на значительную сложность инженерно-геологических исследований в районах развития карста, оползней, погребенных долин, где все изыскания проводятся на более значительную глубину, чем при исследованиях в районах с более благоприятными инженерно-геологическими условиями.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

Прочность грунтов оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности R c МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют:

    минеральный состав

    характер структурных связей

    трещиноватость

    степень выветрелости

    степень размягчаемости в воде и др.

Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, т.е. несущей способности, а также для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т.д.

Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящими к разрушению. Деформируемость грунтов зависит, как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их материалов. Деформационные свойства грунтов оцениваются модулем деформации Е, МПа.

Грунты определяют устойчивость возводимых на них зданий и сооружений, поэтому необходимо правильно определять характеристики, которые обуславливают прочность и устойчивость грунтов при их взаимодействии со строительными объектами.

Образца грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах в буровых скважинах, которые располагают на строительных площадках.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты – это образцы грунтов с ненарушенной структурой. Такие монолиты отбираются в скальных и связных (пылевато-глинистых) грунтах. Размеры монолитов должны быть не меньше установленных норм. Так, для определения сжимаемости грунта, пробы, отбираемые в шурфах, должны иметь размеры 20×20×20 см. в монолитах пылевато-глинистых грунтов при этом должна быть сохранена природная влажность. Это достигается созданием на их поверхности водонепроницаемой парафиновой или восковой оболочки. В рыхлых грунтах (песок, гравий) образцы отбираются в виде проб определенной массы. Так, для проведения гранулометрического анализа песка необходимо иметь пробу не менее 0,5 кг.

В лабораторных условия можно определять все физико-механические свойства. Каждая характеристика этих свойств определяется согласно ГОСТу, например, природная влажность и плотность грунта – ГОСТ 5180-84, предел прочности – ГОСТ 17245-79, гранулометрический (зерновой) и микроагрегатный состав – ГОТ 12536-79 и т.д.

Лабораторные исследования на сегодня остаются основным видом определения физико-механических свойств грунтов. Ряд характеристик, например, природная влажность, плотность частиц грунта и некоторые другие определяются только в лабораторных условиях и с достаточно высокой точностью. В тоже время лабораторные исследования грунтов имеют свои недостатки:

    они довольно трудоемки и требуют больших затрат времени;

    результаты отдельных анализов, например, определение модуля общей деформации, не дает достаточно точных результатов, что бывает связано с неправильным отбором монолитов, неправильным их хранением, низкой квалификацией исполнителя анализа;

    определения свойств массива грунта по результатам анализов небольшого количества образцов не позволяют получать верное представление о его свойствах в целом.

Это связано с тем, что однотипные грунты, даже в пределах одного массива, все же имеют известные различия в своих свойствах.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

Горные породы представляют собой природные минеральные агрегаты, которые «рождаются» в земной коре.

По своему происхождению их делят на три типа: магматические, осадочные и метаморфические. В земной коре магматические и метаморфические породы занимают 95% от общей ее массы. Осадочные породы располагаются непосредственно на поверхности Земли, покрывая собой в большинстве случаев магматические и метаморфические породы.

Осадочные горные породы. Любая находящаяся на земной поверхности порода подвергается выветриванию, т.е. разрушительному воздействию воды, колебаний температур и т.д. в результате даже самые массивные, прочные магматические породы постепенно разрушаются, образуя обломки разных размеров и распадаясь до мельчайших частиц.

Продукты разрушения переносятся ветром, водой и на определенном этапе переноса отлагаются, образуя рыхлые скопления или осадки. Накопление происходит на дне рек, морей, океанов и на поверхности суши. Из рыхлых скоплений (осадков) с течением времени формируются различные осадочные породы.

Осадочные породы слагают самые верхние слои земной коры, покрывая своеобразным чехлом породы магматического и метаморфического происхождения. Несмотря на то, что осадочные породы составляют всего 5% земной коры, земная поверхность на 75% своей площади покрыта именно этими породами, в связи с чем строительство и производится в основном на осадочных породах. Инженерная геология этим породам уделяет наибольшее внимание.

Осадочные породы принято подразделять на три основные группы:

1) обломочные;

2) химического происхождения (хемогенные);

3) органогенные, возникшие в результате жизнедеятельности организмов.

Это деление несколько условно, так как многие породы имеют смешанное происхождение, например, отдельные известняки содержат в своем составе материал органогенного, химического и обломочного характера.

Хемогенные породы образуются в результате выпадения их водных растворов химических осадков. Такой процесс происходит в водах морей, континентальных усыхающих бассейнов, соленых источниках и т.д. к таким породам относятся различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. общей для этих пород особенностью является их растворимость в воде, трещиноватость.

Наиболее распространенными породами являются известняки, которые по своему происхождению могут быть также обломочными, органогенными.

Органогенные (биохемогенные) породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, многие растворяются в воде, обладают большой сжимаемостью. К органогенным породам относятся известняк-ракушечник, диатомит.

6. Приток напорных вод в совершенный колодец.

Воды, находящиеся в верхней части земной коры, носят название подземных вод. Науку о подземных водах, их происхождении, условиях залегания, законах движение, физических и химических свойствах, связях с атмосферными и поверхностными водами называют гидрогеологией.

Классификаций подземных вод существует несколько, но главных из них две. Подземные воды подразделяют: по характеру их использования и по условиям залегания в земной коре. В число первых входят хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные. Ко вторым относят: верховодки, грунтовые и межпластовые воды, а также воды трещин, карста, вечной мерзлоты. В инженерно-геологических целях подземные воды целесообразно классифицировать по гидравлическому признаку – безнапорные и напорные.

Межпластовые напорные воды. Эти воды располагаются в водоносных горизонтах между водоупорами. Они бываю ненапорными и напорными (артезианскими).

Межпластовые ненапорные воды встречаются сравнительно редко. Они связаны с горизонтально залегающими водоносными слоями, заполненными водой полностью или частично.

Напорные (артезианские) воды связаны с залеганием водоносных слоев в виде синклиналей и моноклиналей. Площадь распространения напорных водоносных горизонтов называют артезианским бассейном.

Приток напорных вод к водозаборным сооружениям. Водозаборы – это сооружения, с помощью которых происходит захват (забор) подземных вод для водоснабжения, отвод их с территории строительства или просто в целях понижения уровней грунтовых вод. Существуют различные типы подземных водозаборных сооружений: вертикальные, горизонтальные, лучевые.

К вертикальным водозаборам относят буровые скважины и шахтовые колодцы, к горизонтальным – траншеи, галереи, штольни, к лучевым – водосборные колодцы с водоприемными лучами-фильтрами. Тип сооружения для забора подземной воды выбирают на основе технико-экономического расчета, исходя из глубины залегания водоносного слоя, его мощности, литологического состава водоносных пород и намечаемой производительности водозабора.

Водозаборы, состоящие из одной скважины, колодца и т.д., называют одиночными, а из нескольких – групповыми.

Водозаборные сооружения, вскрывающие водоносный горизонт на полную его мощность, являются совершенными, а не на полную – несовершенными.

Отвод грунтовых вод со строительных площадок или снижение их уровней может производиться временно, только на период производства строительных работ или практически на весь период эксплуатации объекта. Временный отвод воды (или снижение уровня) называют строительным водозабором, а во втором случае – дренажами.

Водозаборные колодцы. Колодцы и траншеи, дно которых достигает водоупоров, называют совершенными; если дно располагается выше водоупора, то несовершенными. Уровень воды в колодце до откачки называют статическим, а уровень, пониженный в процессе откачки, - динамическим.

Если из колодца вода не откачивается, то ее уровень находится в одном положении с поверхностью грунтового потока. При откачке воды возникает депрессионная воронка, уровень воды в колодце понижается. Производительность колодца определяется величиной дебита. Под дебитом колодца понимают то количество воды, которое он может дать за единицу времени. При откачке воды в количестве большем, чем величина дебита, т.е. больше того, что притекает к колодцу из водоносного слоя в единицу времени, уровень резко понижается. На некоторое время колодец может остаться без воды.

Приток воды (дебит) к совершенному колодцу определяют по формуле

Q = πk ф [H 2 -h 2 )/lnR-lnr ]

где r – радиус колодца, м.

в несовершенный колодец вода поступает через его стенки и дно. Это усложняет расчет притока. Дебит таких колодцев меньше дебита совершенных колодцев. При откачке вода поступает в колодец только из части водоносного слоя, которую называют активной зоной Н 0 . Глубину активной зоны принимают 4 / 3 высоты столба воды в колодце до откачки. Эти положение позволяют для несовершенного колодца расход рассчитывать по формуле Дюпюи, в интерпритации Паркера:

Q = 1,36k ф [H 2 -h 2 )/lnR-lnr ]

Колодец отдает воду в объеме своего максимального дебита лишь в том случае, если соседние колодцы будут расположены от него на расстоянии не менее двух радиусов влияния.

Список использованной литературы. классификация горных пород учитывает условия их образования , которые предопределяют строение и, ... мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами...

  • Горные породы и их виды

    Реферат >> Геология

    Понятие горных пород и их классификацию ; - изучить свойства... экзогенных процессов. Сами экзогенные ... Среди главных породообразующих компонентов выделим: 1-реликтовые минералы и... с образованием необратимых остаточных... свойства определяют условия распространения в...

  • Опишите главнейшие месторождения кремнеземистых материалов

    Реферат >> Промышленность, производство

    Значение имеют экзогенные месторождения песка... этом главная их масса... и омыляют их . Основными породообразующими минералами в глинах... дальнейшей классификации . ... условиях высоких давлений и температур, и образование отдельных кристаллов вторичных минералов ...

  • Инженерная геология. Гидрогеология

    Реферат >> Геология

    Процессы пародо образования и предложил первую классификацию минералов и горных... сейсмические волны. 5.Породообразующие минералы , их свойства Условие образование минералов . Минералы – это природные... земли и является главным экзогенным процессом. Море...

  • Сейчас известно ~ 3000 минералов и каждый год их число увеличивается. Как ориентироваться в этом многочисленном и разнообразном мире минералов? Для этого ученые группируют или систематизируют их на основе каких-то признаков. То есть проводят классификацию. В минералогии были попытки создать классификацию на основе разных признаков: например по твердости, блеску или спайности; по условиям образования или генезису. Но есть минералы, которые могут образоваться совершенно в разных условиях. С середины прошлого столетия минералы стали классифицировать по химическому составу - по доминирующему аниону или анионной группе. Но только после появления рентгеноструктурного анализа и определения с его помощью внутреннего строения минералов стало возможным установить тесную связь между химическим составом минерала и его кристаллической решеткой. Это открытие положило начало принципу кристаллохимической классификации минералов. Впервые это сделали ученые Брэгг и Гольдшмидт для силикатов.

    За основную единицу при такой классификации принят минеральный вид, обладающий определенной кристаллической структурой и определенным стабильным химическим составом. Минеральный вид может иметь разновидности. Под разновидностью понимают минералы одного вида, отличающиеся друг от друга по какому-то физическому признаку, например по цвету минерал кварц многочисленными разновидностями (черный - морион, прозрачный - горный хрусталь, фиолетовый - аметист).

    В процессе минералообразования минералы одного минерального вида могут отличаться друг от друга внешним обликом - размерами кристаллов или формой. В этом случае каждый минерал одного минерального вида называют минеральный индивид.

    Существующие классификации объединяют минеральные виды в классы или группы. Их количество у разных авторов колеблется, по мере усовершенствования классификации и получения новых данных о минеральных видах. Мы рассмотрим восемь классов:

    Характеристика минералов по классам

    1. Самородные

    2. Сульфиды

    3. Оксиды и гидрооксиды

    4. Галоиды

    5. Карбонаты

    6. Сульфаты

    7. Фосфаты

    8. Силикаты

    1. Самородные элементы (минералы).

    К этому классу относятся минералы, состоящие их одного химического элемента и называемых по этому элементу. Например: самородное золото сера и т.д. Все они подразделяются на две группы: металлы и неметаллы. В первую группу входят самородные Au, Ag, Cu, Pt, Fe и некоторые др., во вторую - As, Bi, S и С (алмаз и графит).

    Генезис - в основном, образуются при эндогенных процессах в интрузивных породах и кварцевых жилах, S - при вулканизме. При экзогенных процессах происходит разрушение пород, высвобождение самородных минералов (в силу их устойчивости к физическому и химическому воздействию) и их концентрация в благоприятных для этого местах. Таким образом, могут формироваться россыпи золота, платины и алмаза.

    Применение в народном хозяйстве:

    1 - ювелирное производство и валютные запасы (Au, Pt, Ag, алмазы);

    2 - культовые предметы и утварь (Au, Ag),

    3 - радиоэлектроника (Au, Ag, Cu), атомная, химическая промышленность, медицина, режущие инструменты - алмаз;

    4 - сельское хозяйство - сера.

    II. Сульфиды - соли сероводородной кислоты.

    Подразделяются на простые с общей формулой А m X p и сульфосоли - А m B n X p, где -

    А - атом металлов, В-атомы металлов и металлоидов, Х - атомы серы.

    (Pb, Cu, Fe и т.д.) (Bi, Sb, As, Sn)

    Сульфиды кристаллизуются в разных сингониях - кубической, гексагональной, ромбической и т.д. По сравнению с самородными, у них более широкий состав элементо-катионов. Отсюда большее разнообразие минеральных видов и более широкий диапазон одного и того же свойства.

    Общими свойствами для сульфидов являются металлический блеск, невысокая твердость (до 4), серые и темные цвета, средняя плотность.

    В то же время, среди сульфидов отмечаются различия по таким свойствам как спайность, твердость, плотность. Например:

    Сульфиды являются основным источником руд цветных металлов, а за счет примесей редких и благородных металлов ценность их использования повышается.

    Генезис - различные эндогенные и экзогенные процессы.

    III. Оксиды и гидроксиды - представляют один из наиболее распространенных классов с более 150 минеральными видами, в которых атомы или катионы металлов образуют соединения с кислородом или гидроксильной группой (ОН). Это выражается общей формулой АХ или АВХ - где Х-атомы кислорода или гидроксильная группа. Наиболее широко представлены оксиды Si, Fe, Al, Ti, Sn. Некоторые из них образуют и гидрооксидную форму. Особенность большинства гидрооксидов - снижение значений свойств по сравнению с оксидной формой того же атома металла. Яркий приме р - оксидная и гидрооксидная форма Al.

    Оксиды по химическому составу и блеску можно разделить на: металлические и неметаллические. Для первой группы характерны средняя твердость, темные цвета (черный, серый, бурый), средняя плотность. Пример - минералы гематит и касситерит. Вторая группа характеризуется низкой плотностью, высокой твердостью 7-9, прозрачностью, широкой гаммой цветов, отсутствием спайности. Приме р - минералы кварц, корунд.

    В народном хозяйстве наиболее широко используются оксиды и гидрооксиды для получения Fe, Mn, Al, Sn. Прозрачные, кристаллические разновидности корунда (сапфир и рубин) и кварца (аметист, горный хрусталь и др.) используются как драгоценные и полудрагоценные камни.

    Генезис - при эндогенных и экзогенных процессах.

    IV. Галоиды. Наиболее широко распространены фториды и хлориды - соединения катионов металлов с одновалентным фтором и хлором.

    Фториды - минералы светлые, средней плотности и твердости. Представитель - флюорит CaF2. Хлоридами являются минералы галит и сельвин (NaCl и KCl).

    Для галоидов общими являютс я - низкая твердость, кристаллизация в кубической сингонии, совершенная спайность, широкая цветовая гамма, прозрачность. Особыми свойствами обладают галит и сильвин - соленый и горько-соленый вкус.

    По генезису фториды и хлориды отличаются. Флюорит - продукт эндогенных процессов (гидротермальный), а галит и сильви н - образуются в экзогенных условиях за счет осаждения при испарении в водоемах.

    В народном хозяйстве флюорит используется в оптике, металлургии, для получения плавиковой кислоты. Галит и сильвин находят применение в химической и пищевой промышленности, в медицине и сельском хозяйстве, фотоделе.

    V. Карбонаты - соли угольной кислоты, общая формула АСО3 - где А - Са, Мg, Fe и др.

    Общие свойств а - кристаллизуются в ромбической и тригональной сингониях (хорошие кристаллические формы и спайность по ромбу); низкая твердость 3-4, преимущественно светлая окраска, реакция с кислотами (HCl и HNO3) с выделением углекислого газа.

    Наиболее распространенными являются: кальцит СаСО3, магнезит Mg СО3, доломит СаМg (СО3) 2, сидерит Fe СО3.

    Карбонаты с гидроксильной группой (ОН):

    Малахит Cu2 CO3 (OH) 2 - зеленый цвет и реакция с НС l,

    Азурит Cu3 (CO3) 2 (OH) 2 - синий цвет, прозрачен в кристаллах.

    Генезис карбонатов разнообразен - осадочный (химический и биогенный), гидротермальный, метаморфический.

    Это породообразующие минералы осадочных пород (известняки, доломиты и др.) и метаморфических - мрамор, скарны. Используются в строительстве, оптике, металлургии, как удобрения. Малахит используется как поделочный камень. Большие скопления магнезита и сидерита - источник получения железа и магния.

    VI. Сульфаты - соли серной кислоты, т.е. имеют радикал SO4. Наиболее распространенные и известные сульфаты Ca, Ba, Sr, Pb. Общими свойствами для них являютс я - кристаллизация в моноклинной и ромбической сингониях, светлая окраска, низкая твердость, стеклянный блеск, совершенная спайность.

    Минералы: гипс CaSO4 *2H2O, ангидрит CaSO4, барит BaSO4 (высокая плотность), целестин SrSO4.

    Образуются в экзогенных условиях, часто совместно с галоидами. Некоторые сульфаты (барит, целестин) имеют гидротермальный генезис.

    Применение - строительство, сельское хозяйство, медицина, химическая промышленность.

    IIV. Фосфаты - соли фосфорной кислоты, т.е. содержащие PO4.

    Количество минеральных видов мало, мы рассмотрим минерал апатит Ca(PO4) 3 (F, Cl, OH). Он образует кристаллические и зернистые агрегаты, твердость 5, сингония гексагональная, спайность несовершенная, цвет зелено-голубой. Содержит примеси стронция, иттрия, редкоземельные элементы.

    Генезис - магматический и осадочный, где он в смеси с глинистыми частицами образует фосфорит.

    Применение - агросырье, химическое производство и в керамических изделиях.

    VIII. Силикаты - наиболее распространенный и разнообразный класс минералов (до 800 видов). В основе систематики силикатов - кремнекислородный тетраэдр -4. В зависимости от структуры, которую они образуют, соединяясь друг с другом, все силикаты делятся на:

    островные, слоевые, ленточные, цепочечные и каркасные.

    Островные силикаты - в них связь между обособленными тетраэдрами осуществляется через катионы. В эту группу входят минералы: оливин, топаз, гранаты, берилл, турмалин.

    Слоевые силикаты - представляют непрерывные слои, где тетраэдры связаны ионами кислорода, а между слоями связь осуществляется через катионы. Поэтому у них общий радикал в формуле 4- Эта группа объединяет минералы-слюды: биотит, тальк, мусковит, серпентин.

    Цепочечные и ленточные - тетраэдры образуют цепочки одинарные или сдвоенные (ленты). Цепочечные - имеют общий радикал 4- и включают группу пироксенов.

    Ленточные силикаты с радикалом 6 - объединяют минералы группы амфиболов.

    Каркасные силикаты - в них тетраэдры соединяются между собой всеми атомами кислорода, образуя каркас с радикалом . В эту группу входят - полевые шпаты и плагиоклазы. Полевые шпаты объединяют минералы с катионами Na и K. Это минералы микроклин и ортоклаз. В плагиоклазах в качестве катионов - Са и Na, при этом соотношение между этими элементами не постоянно. Поэтому плагиоклазы представляют собой изоморфный ряд минералов:

    альбит - олигоклаз - андезин - лабрадор - битовнит - анортит. От альбита к анортиту увеличивается содержание Са.

    В составе катионов в силикатах наиболее часто присутствуют: Mg, Fe, Mn, Al, Ti, Ca, K, Na, Be, реже Zr, Cr, B, Zn редкие и радиоактивные элементы. Необходимо отметить, что часть кремния в тетраэдрах может замещаться Al и тогда мы относим минералы к алюмосиликатам.

    Сложный химический состав и разнообразие кристаллической структуры в сочетании дают большой разброс показателей физических свойств. Даже на примере шкалы Мооса видно, что твердость у силикатов от 1 до 9.

    Спайность от весьма совершенной до несовершенной. Об окраске и говорить нечего - широчайший спе ктр цв етов и оттенков.

    В тоже время, внутри каждой структурной группы свойства близки и всегда есть какой-то один или два признака, по которым можно определить минерал. Например, слюды определяют по спайности и низкой твердости.

    Часто силикаты группируются по окраске - темноокрашенные, светлоокрашенные. Особенно широко это применяется к силикатам - породообразующим минералам.

    Силикаты образуются в основном при формировании магматических и метаморфических пород в эндогенных процессах. Большая группа глинистых минералов (каолин и др.) образуется в экзогенных условиях при выветривании силикатных горных пород.

    Многие силикаты являются полезными ископаемыми и применяются в народном хозяйстве. Это строительные материалы, облицовочные, поделочные и драгоценные камни (топаз, гранаты, изумруд, турмалин и др.), руды металлов (Ве, Zr, Al) и неметаллов (В), редких элементов. Они находят применение в резиновой, бумажной промышленности, как огнеупоры и керамическое сырье.

    Твердая оболочка Земли - земная кора - составляет лишь 1,5% от общего объема земного шара. Но, несмотря на это, именно земная кора, а точнее ее верхний слой, представляет для нас наибольший интерес, так как он является источником минерального сырья.
    Минералы - это относительно однородные природные тела, имеющие определенные химический состав и физические свойства. Название «минерал» происходит от латинского слова «минера», что в буквальном переводе означает - руда, рудный. Наука, изучающая состав, структуру и свойства минералов, их происхождение и условия залегания, называется минералогией.
    Минералы образуются в результате физико-химических процессов, совершающихся в земной коре. Как и вся окружающая нас природа, они состоят из химических элементов. Образно говоря, минерал - это своего рода здание из кирпичиков - химических элементов, построенное по определенным законам природы. И подобно тому, как из примерно одинакового количества кирпичей человеком возведено на Земле множество различных зданий, из сравнительно небольшого числа химических элементов природой создано в земной коре более 3 тыс. разнообразных минералов.

    Всего с учетом многочисленных разновидностей насчитывается более 7 тыс. их наименований, которые даются каждому минералу по какому-либо признаку.
    В земной коре минералы чаще встречаются не самостоятельно, а в составе горных пород. Они во многом определяют физико-механические свойства горных пород и с этой точки зрения представляют наибольший интерес для технологии обработки камня.
    Большинство минералов встречается в природе в твердом состоянии. Твердые минералы могут быть кристаллическими или аморфными, различаясь внешне геометрической формой - правильной у кристаллических и неопределенной у аморфных.

    Форма минералов зависит от расположения в них атомов. В кристаллических минералах атомы располагаются в строго определенном порядке, образуя пространственную решетку, благодаря которой многие минералы (например, кристалл кварца) имеют вид правильных многогранников. Кристаллические минералы анизотропны, т. е. физические свойства их различны по разным направлениям. В аморфных минералах (обычно они имеют форму натеков) атомы расположены беспорядочно. Такие минералы изотропны, т. е. физические свойства их одинаковы по всем направлениям.

    Классификация минералов
    В соответствии с общепривятой в настоящее время химической классификацией все минералы могут быть разделены на девять классов:
    I. Силикаты - соли кремневых кислот, среди которых выделяют подгруппы минералов, имеющих некоторую общность состава и строения: полевые шпаты, разделяющиеся по химическому составу на плагиоклазы и ортоклазы, пироксены, амфиболы, слюды, оливин, тальк, хлориты и глинистые минералы. Это самый многочисленный класс, насчитывающий до 800 минералов.
    II. Карбонаты - соли угольной кислоты, включающие до 80 минералов и в их числе наиболее распространенные кальцит, магнезит н доломит.

    III. Окислы и гидроокислы - объединяют около 200 минералов, среди которых наиболее распространены кварц, опал, лимонит, гаматит.
    IV. Сульфиды - соединения элементов с серой, насчитывающие до 200 минералов. Типичный представитель - пирит.
    V. Сульфаты - соли серной кислоты, включающие около 260 минералов,
    среди которых наибольшее распространение получили гипс и ангидрит.
    VI. Галоиды - соли галоидных кислот, насчитывающие около 100 мине-
    ралов. Типичные представители галоидов - галит (поваренная соль) и
    флюорит.

    Горные породы. Структура и текстура горных пород.

    Горные породы. Структуры и текстуры пород.

    Горные породы. Структуры и текстуры пород. - раздел Геология, Предмет и методы геологии. Принцип актуализма: униформизм и актуалистический подход. Предмет и методы геологии. Специфика геологии. Разделы современной геологии. Специфика геологии: Структура – Способы Расположения В Пространстве Зерен Ми...

    Структура – способы расположения в пространстве зерен минералов в горной породе. Характеристика объемного строения ГП, обусловленная формой, размером и способом соединения минеральных индивидов. Зависит от условий образования ГП и является их главной характеристикой. Различаются по степени кристалличности породы, абсолютным и относительным размерам кристаллов.

    Текстура - взаимное расположение минеральных зерен и их агрегатов в пространстве, общий облик породы (рисунок.)

    Структура магматических пород:

    1) Полнокристаллическая – все в-во породы представлено в виде кристаллов

    2) Неполнокристаллическая- часть в-ва породы затвердела в виде вулканического стекла, другая

    3) Стекловатая- в-во породы представлено вулканическим стеклом

    4) Скрытокристаллическая (афанитовая) – размер зерен менее 0,1мм

    5) Мелкокристаллическая (мелкозернистая) – размер крист. 0,1-1 мм

    6) Среднекристаллические- 1-5 мм

    7) Крупнокристаллические – 5-10 мм

    8) Грубо- или гигантокристаллические- более 1 см

    9) Равномернокристаллические, равномернозернистые, неравномернозернистые

    10) Порфировая- неравномернозернистые струк., в которых кристаллы отдельных минералов выделяются крупными размерами на фоне стекловатой или скрытокристаллической основной массы

    11) Порфировидная- крупные кристаллы погружены в основную массу с ясно различимыми зернами меньшего размера

    12) Пегматитовая- прорастание КПШ кварцем

    Текстура магматических пород:

    1) Плотные(компактные)- зерна плотно прилегают друг к другу (вулканические стекла)

    2) Пористая- наличие полостей, пор

    3) Пузырчатые, пенистые (шлаки, пемза)

    4) Миндалекаменная- если пустоты в пористой породе заполнены вторичным минералом (опал, халцедон и т.д.)

    5) Массивная –однородная

    6) Полосчатая- чередование полос различного цвета или различного минерального состава

    7) Флюидальная- следы струй течения магматического материала

    8) Пятнистая- пятнистое, неравномерное распределение цветных минералов.

    Структура метаморфических ГП:

    1) Микрокристаллическая- не различимая вооруженным глазом 2) Катокластическая (Обломочная)- разновеликие угловатые обломки (структура брекчии) 3) Полнокристаллическая (микрокристаллическая – 0,01- 0,1 мм, мелкокристаллические 0,1-1 мм, среднекристаллические 1-5 мм, крупнокристаллические 5-10мм, гигантокристаллические >10мм)

    Текстура метаморфических ГП:

    1) Полосчатая 2) Массивная 3) Очковая(округлые агрегаты в сланцеватой массе) 4) Плойчатая (мелкие складки) 5) Сланцеватая (порода разделяется на пластинки) 6) Пятнистая

    Магматические горные породы

    Происхождение и классификация. Магматическими (или извер­женными) горными породами называют горные породы, которые образовались в результате кристаллизации магмы при ее остыва­нии в недрах Земли или на ее поверхности. Магма (или ла­ва) - это сложный силикатный расплав примерно следующего со­става: кислород - 46,7 %, кремний - 27,7 %, алюминий - 8,1 %, железо - 5,1 %, кальций - 3,6 %, магний - 2,1 %, натрий - 2,7 %, калий - 2,6 %, другие элементы обычно не превышают в среднем 1,4 %. Температура магмы различна, но обычно 100 - 1300 °С.

    История формирования магматических горных пород берет начало с образования магмы, которая затем последовательно из­менялась под воздействием слабо изученных сложнейших взаи­мосвязанных физических, химических, физико-химических про­цессов. Процессы эти во многом завершаются при охлаждении или кристаллизации магмы с образованием агрегатов силикатных минералов. В зависимости от условий, в которых происходит ох­лаждение и застывание (потеря подвижности) магмы, горные по­роды делят на интрузивные (глубинные) и эффузивные (излившие­ся) (рис. 16).

    Эффузивные породы образуются из той же магмы, что и глу­бинные, поэтому их называют аналогами глубинных пород. Разно­видностями этих пород соответственно будут жильные и вулканиче­ские. При формировании вулканических пород на поверхности земли магму называют лавой.

    Некоторые геологи считают, что в основе зарождения магмы лежит единая первичная магма базальтового состава, дальнейшая же дифференциация ее привела к образованию различных по со­ставу магматических пород.

    Осадочные горные породы.

    Содержание статьи

    МИНЕРАЛЫ И МИНЕРАЛОГИЯ. Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, – довольно однородные кристаллические вещества с упорядоченной внутренней структурой и определенным составом, который может быть выражен соответствующей химической формулой. Минералы не являются смесью мельчайших минеральных частиц, как, например, наждак (состоящий в основном из корунда и магнетита) или лимонит (агрегат гетита и других гидроксидов железа), к ним относятся также соединения элементов с неупорядоченной структурой, подобные вулканическим стеклам (обсидиану и др.). Минералами считаются химические элементы или их соединения, образовавшиеся в результате естественных природных процессов. Из числа минералов исключаются такие важнейшие виды минерального сырья органического происхождения, как уголь и нефть.

    Минералогия – наука о минералах, их классификации, химическом составе, особенностях и закономерностях строения (структуры), происхождении, условиях нахождения в природе и практическом применении. Для более глубокого объяснения внутреннего строения минералов и их связи с историей Земли минералогия привлекает математику, физику и химию. Она в большей мере, чем другие геологические науки, использует количественные данные, так как для адекватного описания минералов необходимы тонкий химический анализ и точные физические измерения.

    ИСТОРИЯ МИНЕРАЛОГИИ

    Кремневые отщепы с острыми краями применялись первобытным человеком в качестве орудий труда уже в палеолите. Кремень (тонкозернистая разновидность кварца) долгое время оставался главным полезным ископаемым. В древности человеку были известны и другие минералы. Некоторые из них, например вишневый гематит , желто-коричневый гетит и черные оксиды марганца, применялись в качестве красок для наскальной живописи и раскрашивания тела, а другие, например янтарь , нефрит, самородное золото , – для изготовления ритуальных предметов, украшений и амулетов. В Египте додинастического периода (5000–3000 до н.э.) знали уже много минералов. Самородная медь , золото и серебро использовались для украшений. Несколько позже из меди и ее сплава – бронзы стали изготавливать орудия труда и оружие. Многие минералы употреблялись в качестве красителей, другие – для украшений и печаток (бирюза , жад , хрусталь, халцедон , малахит , гранат , лазурит и гематит). В настоящее время минералы служат источником получения металлов, строительных материалов (цемент, штукатурка, стекло и проч.), сырья для химической промышленности и др.

    В первом известном трактате по минералогии О камнях ученика Аристотеля грека Теофраста (ок. 372–287 до н.э.) минералы делились на металлы, земли и камни. Примерно через 400 лет Плиний Старший (23–79 н.э.) в пяти последних книгах Естественной истории обобщил все имевшиеся на тот момент сведения по минералогии.

    В раннем Средневековье в странах арабского Востока, воспринявших знания античной Греции и древней Индии, происходил расцвет науки. Среднеазиатский ученый-энциклопедист Бируни (973 – ок. 1050) составил описания драгоценных камней (Минералогия ) и изобрел метод точного измерения их удельных весов. Другой выдающийся ученый Ибн Сина (Авиценна) (ок. 980–1037) в трактате О камнях дал классификацию всех известных минералов, разделив их на четыре класса: камни и земли, горючие ископаемые, соли, металлы.

    В Средние века в Европе происходило накопление практических сведений о минералах. Горняк и старатель по необходимости становились минералогами-практиками и передавали свой опыт и знания ученикам и подмастерьям. Первым сводом фактических сведений по практической минералогии, горному делу и металлургии стал труд Г.Агриколы О металлах (De re metallica ), опубликованный в 1556. Благодаря этому трактату и более раннему труду О природе ископаемых (De natura fossilium , 1546), в котором содержится классификация минералов на основе их физических свойств, Агрикола прослыл отцом минералогии.

    На протяжении 300 лет после выхода работ Агриколы исследования в области минералогии были посвящены изучению природных кристаллов. В 1669 датский натуралист Н.Стенон, обобщив свои наблюдения над сотнями кристаллов кварца, установил закон постоянства углов между гранями кристаллов. Столетием позже (1772) Роме де Лиль подтвердил выводы Стенона. В 1784 аббат Р.Гаюи заложил основы современных представлений о кристаллической структуре. В 1809 У.Волластон изобрел отражательный гониометр, что позволило проводить более точные измерения углов между гранями кристаллов, а в 1812 выдвинул концепцию пространственной решетки как закона внутреннего строения кристаллов. В 1815 П.Кордье предложил изучать оптические свойства обломков раздробленных минералов под микроскопом. Дальнейшее развитие микроскопических исследований связано с изобретением в 1828 У.Николем устройства для получения поляризованного света (призмы Николя). Поляризационный микроскоп был усовершенствован в 1849 Г.Сорби, который применил его к изучению прозрачных шлифов горных пород.

    Появилась необходимость классификации минералов. В 1735 К.Линней опубликовал труд Система природы (Systema naturae ), в котором минералы классифицировались по внешним признакам, т.е. так же, как растения и животные. Затем шведскими учеными – А.Кронстедтом в 1757 и Й.Берцелиусом в 1815 и 1824 – было предложено несколько вариантов химических классификаций минералов. Вторая классификация Берцелиуса, модифицированная К.Раммельсбергом в 1841–1847, прочно утвердилась после того, как американский минералог Дж.Дана положил ее в основу третьего издания Системы минералогии (Dana"s System of Mineralogy , 1850). Большой вклад в развитие минералогии в 18 – первой половине 19 в. внесли немецкие ученые А.Г.Вернер и И.А.Брайтхаупт и русские – М.В.Ломоносов и В.М.Севергин.

    Во второй половине 19 в. усовершенствованные поляризационные микроскопы, оптические гониометры и аналитические методы позволили получить более точные данные по отдельным минеральным видам. Когда с помощью рентгеновского анализа стали изучать кристаллы, пришло более глубокое понимание строения минералов. В 1912 немецкий физик М.Лауэ экспериментально установил, что информация о внутренней структуре кристаллов может быть получена путем пропускания сквозь них рентгеновских лучей. Этот метод произвел переворот в минералогии: преимущественно описательная наука стала более точной и минералоги смогли увязать физические и химические свойства минералов с их кристаллическими структурами.

    В конце 19 – начале 20 в. развитию минералогии во многом способствовали работы выдающихся российских ученых Н.И.Кокшарова, В.И.Вернадского , Е.С.Федорова, А.Е.Ферсмана, А.К.Болдырева и др. Во второй половине 20 в. минералогия взяла на вооружение новые исследовательские методы физики твердого тела, в частности, инфракрасную спектроскопию, целую серию резонансных методов (электронный парамагнитный резонанс, ядерный гамма-резонанс и др.), люминесцентную спектроскопию и т.д., а также новейшие аналитические методы, включая электронный микрозондовый анализ, электронную микроскопию в сочетании с электронографией и проч. Применение этих методов дает возможность определять химический состав минералов «в точке», т.е. по отдельным зернам минералов, изучать тонкие особенности их кристаллической структуры, содержание и распределение элементов-примесей, природу окраски и люминесценции. Внедрение точных физических методов исследования произвело в минералогии подлинную революцию. С этим этапом развития минералогии связаны имена таких российских ученых, как Н.В.Белов, Д.С.Коржинский, Д.П.Григорьев, И.И.Шафрановский и др.

    ГЛАВНЫЕ СВОЙСТВА МИНЕРАЛОВ

    Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие и в настоящее время большое значение при их описании и визуальной (в частности, полевой) диагностике. Эти характеристики, а также оптические, химические, электрические, магнитные и иные свойства зависят от химического состава и внутреннего строения (кристаллической структуры) минералов. Первостепенная роль химии в минералогии была осознана к середине 19 в., но важное значение структуры стало очевидным лишь с внедрением рентгенографии. Первые расшифровки кристаллических структур были выполнены уже в 1913 английскими физиками У.Г.Брэггом и У.Л.Брэггом .

    Минералы – это химические соединения (исключение составляют самородные элементы). Однако даже бесцветные, оптически прозрачные образцы этих минералов почти всегда содержат небольшие количества примесей. Природные растворы или расплавы, из которых кристаллизуются минералы, обычно состоят из многих элементов. В процессе образования соединений немногочисленные атомы менее распространенных элементов могут замещать атомы главных элементов. Такое замещение настолько обычно, что химический состав многих минералов лишь очень редко приближается к составу чистого соединения. Например, состав распространенного породообразующего минерала оливина меняется в пределах составов двух т.н. конечных членов ряда: от форстерита, силиката магния Mg 2 SiO 4 , до фаялита, силиката железа Fe 2 SiO 4 . Отношения Mg:Si:O в первом минерале и Fe:Si:O – во втором составляют 2:1:4. В оливинах промежуточного состава значения отношений те же, т.е. (Mg + Fe):Si:O равно 2:1:4, а формула записывается в виде (Mg,Fe) 2 SiO 4 . Если относительные количества магния и железа известны, то это можно отразить в формуле (Mg 0,80 Fe 0,20) 2 SiO 4 , из которой видно, что 80% атомов металла представлены магнием, а 20% – железом.

    Структура.

    Все минералы, за исключением воды (которую – в отличие от льда – обычно не относят к минералам) и , при обычных температурах представлены твердыми телами. Однако, если воду и ртуть сильно охладить, они затвердевают: вода – при 0° С, а ртуть – при -39° С. При этих температурах молекулы воды и атомы ртути образуют характерную правильную трехмерную кристаллическую структуру (термины «кристаллический» и «твердый» в данном случае почти равноценны). Таким образом, минералы представляют собой кристаллические вещества, свойства которых определяются геометрическим расположением составляющих их атомов и типом химической связи между ними.

    Элементарная ячейка (наименьшее подразделение кристалла) построена из регулярно расположенных атомов, удерживаемых вместе благодаря электронным связям. Эти мельчайшие ячейки, бесконечно повторяющиеся в трехмерном пространстве, образуют кристалл. Размеры элементарных ячеек в разных минералах различны и зависят от размеров, числа и взаимного расположения атомов в пределах ячейки. Параметры ячейки выражаются в ангстремах (Å) или нанометрах (1 Å = 10 –8 см = 0,1 нм). Составленные вместе элементарные ячейки кристалла плотно, без зазоров заполняют объем и образуют кристаллическую решетку. Кристаллы подразделяются по признаку симметрии элементарной ячейки, которая характеризуется соотношением между ее ребрами и углами. Обычно выделяют 7 сингоний (в порядке повышения симметрии): триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую (изометрическую). Иногда тригональную и гексагональную сингонии не разделяют и описывают вместе под названием гексагональной сингонии. Сингонии подразделяются на 32 кристаллических класса (вида симметрии), включающих 230 пространственных групп. Эти группы впервые были выделены в 1890 российским ученым Е.С.Федоровым. При помощи рентгеноструктурного анализа определяют размеры элементарной ячейки минерала, его сингонию, класс симметрии и пространственную группу, а также расшифровывают кристаллическую структуру, т.е. взаимное расположение в трехмерном пространстве атомов, составляющих элементарную ячейку.

    ГЕОМЕТРИЧЕСКАЯ (МОРФОЛОГИЧЕСКАЯ) КРИСТАЛЛОГРАФИЯ

    Кристаллы с их плоскими, гладкими, блестящими гранями издавна привлекали внимание человека. Со времени появления минералогии как науки кристаллография стала основой изучения морфологии и структуры минералов. Было установлено, что грани кристаллов имеют симметричное расположение, позволяющее отнести кристалл к определенной сингонии, а подчас – и к одному из классов (симметрии) (см. выше ). Рентгенографические исследования показали, что внешняя симметрия кристаллов соответствует внутреннему закономерному расположению атомов.

    Размеры кристаллов минералов варьируют в очень широких пределах – от гигантов весом в 5 т (масса хорошо образованного кристалла кварца из Бразилии) до столь мелких, что их грани можно различить только под электронным микроскопом. Форма кристалла даже одного и того же минерала в разных образцах может несколько отличаться; например, кристаллы кварца бывают почти изометричными, игольчатыми или уплощенными. Однако все кристаллы кварца, крупные и мелкие, остроконечные и плоские, образуются при повторении идентичных элементарных ячеек. Если эти ячейки ориентированы в каком-то определенном направлении, кристалл имеет удлиненную форму, если в двух направлениях в ущерб третьему – то форма кристалла таблитчатая. Поскольку углы между соответствующими гранями одного и того же кристалла имеют постоянное значение и специфичны для каждого минерального вида, этот признак обязательно включается в характеристику минерала.

    Минералы, представленные отдельными хорошо ограненными кристаллами, редки. Гораздо чаще они встречаются в виде неправильных зерен или кристаллических агрегатов. Нередко минерал характеризуется определенным типом агрегата, который может служить диагностическим признаком. Выделяют несколько типов агрегатов.

    Дендритовидные ветвящиеся агрегаты похожи на листья папоротника или мох и характерны, например, для пиролюзита.

    Волокнистые агрегаты, состоящие из плотно уложенных параллельных волокон, типичны для хризотила и амфибол-асбеста.

    Колломорфные агрегаты, имеющие гладкую округлую поверхность, построены из волокон, которые радиально отходят от общего центра. Крупные округлые массы имеют сосцевидную форму (малахит), а более мелкие – почковидную (гематит) или гроздевидную (псиломелан).

    Чешуйчатые агрегаты, состоящие из мелких пластинчатых кристаллов, характерны для слюды и барита.

    Сталактиты – натечно-капельные образования, свисающие в форме сосулек, трубок, конусов или «занавесок» в карстовых пещерах. Они возникают в результате испарения минерализованных вод, просачивающихся по трещинам известняка, и часто сложены кальцитом (карбонатом кальция) или арагонитом.

    Оолиты – агрегаты, состоящие из маленьких шариков и напоминающие рыбью икру, встречаются в некоторых кальцитовых (оолитовый известняк), гетитовых (оолитовая железная руда) и других подобных образованиях.

    КРИСТАЛЛОХИМИЯ

    После накопления рентгенографических данных и их сопоставления с результатами химических анализов стало очевидно, что особенности кристаллической структуры минерала зависят от его химического состава. Таким образом были заложены основы новой науки – кристаллохимии. Многие на первый взгляд не связанные между собой свойства минералов могут быть объяснены на основе учета их кристаллической структуры и химического состава.

    Некоторые химические элементы (золото, серебро, медь) встречаются в самородном, т.е. чистом, виде. Они построены из электронейтральных атомов (в отличие от большинства минералов, атомы которых несут электрический заряд и называются ионами). Атом с недостатком электронов заряжен положительно и называется катионом; атом с избытком электронов имеет отрицательный заряд и называется анионом. Притяжение между противоположно заряженными ионами называется ионной связью и служит главной связующей силой в минералах.

    При другом типе связи внешние электроны вращаются вокруг ядер по общим орбитам, соединяя атомы между собой. Ковалентная связь – самый прочный тип связи. Минералы с ковалентной связью обычно имеют высокие твердость и температуру плавления (например, алмаз).

    Значительно меньшую роль в минералах играет слабая ван-дер-ваальсова связь, возникающая между электронейтральными структурными единицами. Энергия связи таких структурных единиц (слоев или групп атомов) распределена неравномерно. Ван-дер-ваальсова связь обеспечивает притяжение между противоположно заряженными участками в более крупных структурных единицах. Такой тип связи наблюдается между слоями графита (одной из природных форм углерода), образованными благодаря сильной ковалентной связи атомов углерода. Из-за слабых связей между слоями графит имеет низкую твердость и весьма совершенную спайность, параллельную слоям. Поэтому графит используют как смазочный материал.

    Противоположно заряженные ионы сближаются между собой до расстояния, на котором сила отталкивания уравновешивает силу притяжения. Для любой конкретной пары «катион – анион» это критическое расстояние равно сумме «радиусов» двух ионов. Путем определения критических расстояний между различными ионами удалось установить размеры радиусов большинства ионов (в нанометрах, нм).

    Поскольку для большинства минералов характерны ионные связи, их структуры можно наглядно представить в виде соприкасающихся шаров. Структуры ионных кристаллов зависят в основном от величины и знака заряда и относительных размеров ионов. Так как кристалл в целом электронейтрален, сумма положительных зарядов ионов должна быть равна сумме отрицательных. В хлориде натрия (NaCl, минерал галит) каждый ион натрия имеет заряд +1, а каждый ион хлора -1 (рис. 1), т.е. каждому иону натрия соответствует один ион хлора. Однако во флюорите (фториде кальция, CaF 2) каждый ион кальция имеет заряд +2, а ион фтора –1. Поэтому для сохранения общей электронейтральность ионов фтора должно быть вдвое больше, чем ионов кальция (рис. 2).

    От величины ионов зависит также возможность их вхождения в данную кристаллическую структуру. Если ионы имеют одинаковый размер и упакованы таким образом, что каждый ион соприкасается с 12 другими, то они находятся в соответствующей координации. Существуют два способа упаковки шаров одинакового размера (рис. 3): кубическая плотнейшая упаковка, в общем случае приводящая к образованию изометрических кристаллов, и гексагональная плотнейшая упаковка, образующая гексагональные кристаллы.

    Как правило, катионы меньше по размеру, чем анионы, и их размеры выражаются в долях радиуса аниона, принятого за единицу. Обычно используют отношение, получаемое путем деления радиуса катиона на радиус аниона. Если катион лишь немного меньше анионов, с которыми сочетается, он может соприкасаться с восемью окружающими его анионами, или, как принято говорить, находится в восьмерной координации по отношению к анионам, которые располагаются как бы в вершинах куба вокруг него. Эта координация (называемая также кубической) устойчива при отношениях ионных радиусов от 1 до 0,732 (рис. 4,а ). При меньшем отношении ионных радиусов восемь анионов не могут быть уложены так, чтобы касаться катиона. В таких случаях геометрия упаковки допускает шестерную координацию катионов с расположением анионов в шести вершинах октаэдра (рис. 4,б ), которая будет устойчивой при отношениях их радиусов от 0,732 до 0,416. С дальнейшим уменьшением относительного размера катиона осуществляется переход к четверной, или тетраэдрической, координации, устойчивой при значениях отношений радиусов от 0,414 до 0,225 (рис. 4,в ), затем к тройной – в пределах отношений радиусов от 0,225 до 0,155 (рис. 4,г ) и двойной – при отношениях радиусов менее 0,155 (рис. 4,д ). Хотя другие факторы также определяют тип координационного полиэдра, для большинства минералов принцип отношения радиусов ионов – одно из эффективных средств прогнозирования кристаллической структуры.

    Минералы совершенно разного химического состава могут иметь аналогичные структуры, которые можно описать с помощью одних и тех же координационных полиэдров. Например, в хлориде натрия NaCl отношение радиуса иона натрия к радиусу иона хлора составляет 0,535, указывая на октаэдрическую, или шестерную, координацию. Если шесть анионов группируются вокруг каждого катиона, то, чтобы сохранить соотношение катионов и анионов, равное 1:1, вокруг каждого аниона должно быть шесть катионов. Так образуется кубическая структура, известная как структура типа хлорида натрия. Хотя ионные радиусы свинца и серы резко отличаются от ионных радиусов натрия и хлора, их отношение также предопределяет шестерную координацию, поэтому галенит PbS имеет структуру типа хлорида натрия, т.е. галит и галенит изоструктурны.

    Примеси в минералах обычно присутствуют в виде ионов, замещающих ионы минерала-«хозяина». Подобные замещения в большой мере влияют на размеры ионов. Если радиусы двух ионов равны или отличаются менее чем на 15%, они легко взаимно замещаются. Если это различие составляет 15–30%, такое замещение ограничено; при различии свыше 30% замещение практически невозможно.

    Существует много примеров пар изоструктурных минералов со сходным химическим составом, между которыми происходит замещение ионов. Так, карбонаты сидерит (FeCO 3) и родохрозит (MnCO 3) имеют аналогичные структуры, а железо и марганец могут замещать друг друга в любых соотношениях, образуя т.н. твердые растворы. Между этими двумя минералами существует непрерывный ряд твердых растворов. В других парах минералов ионы возможности взаимного замещения ограничены.

    Поскольку минералы электронейтральны, заряд ионов также влияет на их взаимное замещение. Если происходит замещение противоположно заряженным ионом, то в каком-либо участке этой структуры должно иметь место второе замещение, при котором заряд замещающего иона компенсирует нарушение электронейтральности, вызванное первым. Такое сопряженное замещение отмечается в полевых шпатах – плагиоклазах, когда кальций (Ca 2+) замещает натрий (Na +) с образованием непрерывного ряда твердых растворов. Избыточный положительный заряд, возникающий в результате замещения ионом Ca 2+ иона Na + , компенсируется путем одновременного замещения кремния (Si 4+) на алюминий (Al 3+) в соседних участках структуры.

    ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

    Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

    Блеск

    – качественная характеристика отраженного минералом света. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

    Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

    Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

    Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

    Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода . В меньшей степени это справедливо и для минерала корунда (Al 2 O 3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

    Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

    Цвет

    – простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS 2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS 2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту , который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

    Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины , сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

    Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

    Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

    Спайность.

    Характерным свойством минералов является их поведение при раскалывании. Например, кварц и турмалин , поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

    Твердость

    – сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1).

    Чтобы определить твердость минерала, необходимо выявить самый твердый минерал, который он может поцарапать. Твердость исследуемого минерала будет больше твердости поцарапанного им минерала, но меньше твердости следующего по шкале Мооса минерала. Силы связи могут меняться в зависимости от кристаллографического направления, а поскольку твердость является грубой оценкой этих сил, она может различаться в разных направлениях. Эта разница обычно невелика, исключение составляет кианит, у которого твердость 5 в направлении, параллельном длине кристалла, и 7 – в поперечном направлении.

    В минералогической практике используется также измерение абсолютных значений твердости (т.н. микротвердости) при помощи прибора склерометра, которая выражается в кг/мм 2 .

    Плотность.

    Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см 3 .

    Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

    КЛАССИФИКАЦИЯ МИНЕРАЛОВ

    Хотя химический состав служил основой классификации минералов с середины 19 в., минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов. Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону. При этом минералы железа попадали в одну группу, минералы свинца – в другую, минералы цинка – в третью и т.д. Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу), имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом. К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение. В результате в современной систематике (см. табл. 2) минералы объединяются в классы по признаку общего аниона или анионной группы. Единственное исключение составляют самородные элементы, которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

    Таблица 2. Классификация минералов
    Таблица 2. КЛАССИФИКАЦИЯ МИНЕРАЛОВ
    Класс Минерал (пример) Химическая формула
    Самородные элементы Золото Au
    Карбиды 1 Муассанит SiC
    Сульфиды 2 и сульфосоли Киноварь
    Энаргит
    HgS
    Cu 3 AsS 4
    Оксиды Гематит Fe 2 O 3
    Гидроксиды Брусит Mg(OH) 2
    Галогениды Флюорит CaF 2
    Карбонаты Кальцит CaCO 3
    Нитраты Калиевая селитра KNO 3
    Бораты Бура Na 2 B 4 O 5 (OH)4Ч8H 2 O
    Фосфаты 3 Апатит Ca 5 (PO 4) 3 F
    Сульфаты Гипс CaSO 4Ч 2H 2 O
    Хроматы Крокоит PbCrO 4
    Вольфраматы 4 Шеелит CaWO 4
    Силикаты Альбит NaAlSi 3 O 8
    Включая нитриды и фосфиды
    2 Включая арсениды, селениды и теллуриды.
    3 Включая арсенаты и ванадаты.
    4 Включая молибдаты.

    Химические классы подразделяются на подклассы (по химизму и структурному мотиву), которые, в свою очередь, разбиваются на семейства и группы (по структурному типу). Отдельные минеральные виды, входящие в состав группы, могут образовывать ряды, а один минеральный вид может иметь несколько разновидностей.

    К настоящему времени ок. 4000 минералов признаны самостоятельными минеральными видами. К этому списку по мере открытия добавляются новые минералы и исключаются давно известные, но дискредитированные по мере совершенствования методов минералогических исследований.

    ПРОИСХОЖДЕНИЕ И УСЛОВИЯ НАХОЖДЕНИЯ МИНЕРАЛОВ

    Минералогия не ограничивается определением свойств минералов, она исследует также происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

    Бóльшая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов (см. табл. 3 ) составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

    Элемент Массовые проценты Объемные проценты Кислород 46,40 94,04 Кремний 28,15 0,88 Алюминий 8,23 0,48 Железо 5,63 0,49 Кальций 4,15 1,18 Натрий 2,36 1,11 Магний 2,33 0,33 Калий 2,09 1,49

    По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% – наиболее распространенных. Важнейшие из них – полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже – барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

    Изверженные породы.

    Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

    Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

    Осадочные породы.

    Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые – из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

    Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

    Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Бóльшая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

    Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты – обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

    Метаморфические породы.

    Региональный метаморфизм.

    Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы – гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

    Контактовый метаморфизм.

    При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

    Метасоматоз.

    В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд – скарпов, которые нередко вмещают оруденение.

    РУДНЫЕ МЕСТОРОЖДЕНИЯ И ПЕГМАТИТЫ

    Химический состав крупнозернистого гранита может существенно отличаться от состава исходной магмы. Изучение пород показало, что минералы выделяются из магмы в определенной последовательности. Такие богатые железом и магнием минералы, как оливин и пироксены, а также акцессорные минералы кристаллизуются в первую очередь. Из-за более высокой плотности, чем окружающий расплав, в результате процесса магматической сегрегации они оседают вниз. Полагают, что таким образом образуются дуниты – породы, состоящие почти целиком из оливина. Сходное происхождение приписывается некоторым крупным скоплениям магнетита, ильменита и хромита, которые являются рядами соответственно железа, титана и хрома.

    Однако состав расплава, остающегося после удаления минералов путем магматической сегрегации, не полностью идентичен составу образующейся из него породы. В ходе кристаллизации расплава в нем возрастает концентрация воды и других летучих компонентов (например, соединений фтора и бора), а вместе с ними многих других элементов, атомы которых слишком велики или слишком малы для вхождения в кристаллические структуры породообразующих минералов. Выделившиеся из кристаллизующейся магмы водные флюиды могут подниматься по трещинам к поверхности Земли, в область более низких температур и давлений. Это обусловливает отложение минералов в трещинах и образование жильных месторождений. Некоторые жилы сложены в основном неметаллическими минералами (кварцем, кальцитом, баритом и флюоритом). Другие жилы содержат минералы таких металлов, как золото, серебро, медь, свинец, цинк, олово и ртуть; соответственно, они могут представлять собой ценные рудные месторождения. Поскольку подобные месторождения образуются при участии нагретых водных растворов, их называют гидротермальными. Следует сказать, что самые крупные гидротермальные месторождения – не жильные, а метасоматические; они представляют собой пластообразные или иной формы залежи, образовавшиеся путем замещения горных пород (чаще всего известняков) рудоносными растворами. О минералах, слагающих такие месторождения, говорят, что они имеют гидротермально-метасоматическое происхождение.

    Пегматиты генетически связаны с кристаллизующейся гранитной магмой. Масса высокоподвижного флюида, еще богатая элементами, входящими в состав породообразующих минералов, может быть выброшена из магматической камеры во вмещающие породы, где она кристаллизуется с образованием тел грубозернистой структуры, сложенных в основном породообразующими минералами – кварцем, полевым шпатом и слюдой. Такие тела горных пород, называемые пегматитами, весьма изменчивы по величине. Максимальная протяженность большинства пегматитовых тел – несколько сотен метров, но самые крупные из них достигают длины 3 км, а у небольших она измеряется первыми метрами. В пегматитах содержатся крупные кристаллы отдельных минералов, в том числе самые большие в мире полевошпатовые длиной в несколько метров, слюды – до 3 м в поперечнике, кварца – массой до 5 т.

    В некоторых пегматитообразующих флюидах концентрируются редкие элементы (часто в форме крупных кристаллов), например, бериллий – в берилле и хризоберилле, литий – в сподумене, петалитите, амблигоните и лепидолите, цезий – в полуците, бор – в турмалине, фтор – в апатите и топазе. Большинство этих минералов имеют ювелирные разновидности. Промышленное значение пегматитов отчасти связано с тем, что они являются источником драгоценных камней, но главным образом – высокосортных калиевого полевого шпата и слюды, а также рудами лития, цезия и тантала, отчасти бериллия.


    Литература:

    Минералы: Справочник , тт. 1–4. М., 1960–1992
    Флейшер М. Словарь минеральных видов . М., 1980
    Минералогическая энциклопедия . Л., 1985
    Берри Л., Мейсон Б., Дитрих Р. Минералогия. М., 1987

    

    Классы самородных элементов и сульфидов.

    Из наиболее распространенных минералов первого класса можно назвать серу S . Используется в химической промышленности для получения серной кислоты, в сельском хозяйстве и в ряде других отраслей.

    Графит С связан преимущественно с процессами метаморфизма. Широко применяется в металлургии, для производства электродов и др. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина и др.

    К классу сульфидов принадлежат многочисленные минералы - руды металлов.

    Галенит, или свинцовый блеск PbS ,- встречается в виде кристаллических агрегатов, реже - отдельных кристаллов и их сростков. Сингония кубическая. Цвет свинцово-серый; черта серовато-черная, блестящая; блеск металлический; непрозрачный.

    Сфалерит, или цинковая обманка ZnS , - встречается в виде кристаллических агрегатов, реже сростков кристаллов кубической сингонии. Цвет бурый, редко бесцветный, примесями железа бывает окрашен в черный; черта желтая, бурая; блеск алмазный, металловидный; просвечивает; спайность совершенная.

    Класс галоидных соединений.

    К нему относятся минералы, представляющие соли фтористо-, бромисто-, хлористо-, йодистоводородных кислот.

    Наиболее распространенными минералами этого класса являются хлориды, образующиеся главным образом при испарении вод поверхностных бассейнов. Известны выделения хлоридов и из вулканических газов.

    Галит NaCI - образует плотные кристаллические агрегаты, реже кристаллы кубической формы. Чистый галит бесцветный или белый, чаще окрашен в различные светлые цвета; гигроскопичен, соленый на вкус. Используется в пищевой промышленности, в химической для получения хлора, натрия и их производных.

    Сильвин КСl - близок по происхождению и по физическим свойствам к галиту, с которым часто образует единые агрегаты. Отличительный признак - горько-соленый вкус. Применяется в основном как сырье для калийных удобрений, в химической промышленности.

    Фториды связаны преимущественно с гидротермальными, а также с магматическими и пневматолитовыми процессами (греч. "пневма" - дух, газ). В экзогенных условиях образуются редко. К ним относится флюорит, или плавиковый шпат - CaF 2 , встречающийся в виде зернистых скоплений, отдельных кристаллов и их сростков.

    Класс оксидов и гидроксидов.

    По количеству входящих в него минералов занимает одно из первых мест: на его долю приходится около 17% всей массы земной коры. Из них около 12,5% составляют оксиды кремния и 3,9% - оксиды железа. Минералы этого класса образуются как в эндогенных, так и в экзогенных условиях.

    Кварц SiО 2 - широко распространенный в земной коре породообразующий минерал. Кварц встречается в виде зернистых агрегатов, плотных масс, зерен в породах, в пустотах образует кристаллы и их сростки. Кристаллы имеют сложную форму, основой которой является шестигранная призма, оканчивающаяся ромбоэдрами. Цвет разнообразный - бесцветный, белый, серый, встречаются окрашенные разности. Окраска лежит в основе выделения разновидностей кварца: горный хрусталь - бесцветные прозрачные кристаллы; дымчатый кварц - серо-дымчатые, бурые; аметист - фиолетовые кристаллы; морион - черные и др.; просвечивает, реже прозрачен. Кварц выделяется при кристаллизации магмы, выпадает из горячих растворов и паров, возникает в процессе метаморфизма. В экзогенных условиях образуется редко. Химически устойчив в любых условиях.


    Халцедон SiO 2 -скрытокристаллический минерал, образующий плотные, часто натечные массы. Цвет различный, часто желто-бурых тонов. Кварц и халцедон используются в стекольной, химической промышленностях, в строительстве, горный хрусталь (пьезокварц) - в оптике и радиотехнике. Красиво окрашенные разновидности применяются в ювелирном деле. Месторождения многочисленны.

    Опал SiO 2 .nH 2 O - аморфный минерал. Образует плотные, часто натечные массы, слагает некоторые осадочные породы органогенного происхождения. Бесцветный, белый, серый, примесями бывает окрашен в различные цвета. Образуется при выветривании силикатов, в результате жизнедеятельности некоторых организмов; выпадает и из горячих растворов, образуя гейзериты. Используется в ювелирном деле как поделочный камень, в строительстве как абразивный материал.

    Широко распространены в природе минералы оксида железа. Гематит, или железный блеск Fe 2 О 3 , образует плотные мелкокристаллические агрегаты чешуйчатого строения, скрытокристаллические массы (красный железняк), а также желваки (конкреции) радиально-лучистого или скорлуповатого строения. Цвет от желто-серого, стально-серого и почти черного у кристаллических разностей до темно-красного у скрытокристаллических; цвет черты от красно-бурого до вишнево-красного.

    Магнетит, или магнитный железняк FeО.Fе 2 О 3 , или FeFe 2 О 4 , обычно образует плотные кристаллические агрегаты. Сингония кубическая. По свойствам напоминает кристаллическую разновидность гематита, но отличается от него черным цветом черты и магнитными свойствами. Образование гематита и магнетита связано главным образом с эндогенными процессами - магматическими, гидротермальными и метаморфическими. Гематит может возникать и в экзогенных условиях (при выветривании, в морской среде).

    Лимонит, или бурый железняк,- это агрегат близких минералов - гётита FeOOH , гидрогётита FeOOH.nН 2 О , лепидокрокита FeO(OH) и глинистых частиц, соотношения которых непостоянны. Лимонит образует плотные натечные или землистые рыхлые массы, конкреции и оолиты. Часто можно наблюдать в одном образце переходы плотных разностей в рыхлые. Цвет у рыхлых разностей охристо-желтый, у плотных - черный; черта соответственно желто- бурая или бурая. Образование лимонита связано с выветриванием железосодержащих минералов, а также с выпадением из поверхностных вод, причем в этом процессе большую роль играют микроорганизмы.

    Ценным полезным ископаемым на алюминий является боксит, представляющий собой, подобно лимониту, агрегат минералов - оксидов и гидроксидов алюминия: диаспора АlOOН , гидраргиллита Аl(ОН) 3 , бемита АlO(ОН) с примесью оксидов железа, оксида кремния и др. Встречаются в виде землистых рыхлых или твердых масс, часто образуют оолитовые скопления. Цвет белый, серый, желтый, чаще красный, буро-красный. Образуются при выветривании горных пород, которые богаты минералами, содержащими алюминий, и при последующем переотложении продуктов выветривания.

    Класс карбонатов объединяет большое число минералов, для которых характерна реакция с соляной кислотой, сопровождающаяся выделением углекислого газа. Интенсивность реакции помогает различать минералы - карбонаты, близкие по многим свойствам. Они часто светлоокрашенные, со стеклянным блеском; твердостью 3-4,5; спайностью совершенной в трех направлениях. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными.

    Кальцит, или известковый шпат Са[СО 3 ],- один из наиболее распространенных в земной коре минералов, участвующих в строении как осадочных, так и метаморфических пород. Встречается в виде кристаллических и скрытокристаллических агрегатов различной плотности, в пустотах в виде разнообразных натечных форм, кристаллов и их сростков. Цвет разнообразный - от бесцветного и белого, изредка до черного; (бесцветные прозрачные кристаллы кальцита, обладающие двулучепреломлением, называются исландским шпатом); бурно реагирует ("вскипает") с соляной кислотой. Применение разнообразно: в строительстве, в металлургической и химической промышленностях, как поделочный камень, исландский шпат - в оптике.

    Доломит CaMg[СO 3 ] 2 - распространенный минерал, образующий кристаллические и землистые агрегаты. От кальцита отличается несколько большей твердостью и плотностью, а главное, реакцией с соляной кислотой, которая идет только с порошком доломита. Используется в металлургии и строительстве.

    Минералы класса сульфатов осаждаются в поверхностных водоемах, образуются при окислении сульфидов и серы в зонах выветривания, реже связаны с вулканической деятельностью.

    Ангидрит Ca- образует плотные мелкокристаллические скопления. Цвет белый, часто с голубым или серым оттенком; блеск стеклянный, перламутровый; прозрачен, чаще просвечивает; спайность совершенная в одном направлении и средняя в двух. Используется для производства цемента, для поделок.

    Наиболее распространенным минералом класса сульфатов является гипс Ca 2 H 2 O , встречающийся в виде мелкокристаллических и землистых агрегатов, отдельных кристаллов и их сростков. Обычно белый, бывает окрашен в светлые тона; блеск стеклянный, перламутровый, шелковистый; прозрачный или просвечивает; спайность в одном направлении весьма совершенная, в другом средняя. Используется в строительстве, в химической промышленности, медицине и др.

    Класс фосфатов . Наиболее распространенным минералом является апатит Са 5 [РO 4 ] 3 (F,ОН,Cl) (содержание фтора, хлора и гидроксильной группы колеблется). Встречается в виде кристаллических агрегатов и отдельных кристаллов. Цвет бесцветный, чаще бледно-зеленый и зеленовато-голубой. Происхождение магматическое. Широко используется для производства удобрения и в химической промышленности.

    Класс силикатов . Минералы этого класса широко распространены в земной коре (свыше 78%). Они образуются преимущественно в эндогенных условиях, будучи связаны с различными проявлениями магматизма и с метаморфическими процессами. Лишь немногие из них возникают в экзогенных условиях. Многие минералы этого класса являются породообразующими магматических и метаморфических горных пород, реже осадочных.

    Силикаты характеризуются сложным химическим составом и внутренним строением. Минералы содержащие ионы алюминия называются алюмосиликатами.

    Внутренняя структура силикатов и алюмосиликатов в значительной степени обусловливает их свойства: минералы с островной структурой, характеризующейся плотной упаковкой ионов, часто образуют изометричные кристаллы, обладают большой твердостью, плотностью и несовершенной спайностью. Минералы с линейно вытянутыми структурами (цепочечными и ленточными) образуют призматические кристаллы, обладающие хорошо выраженной спайностью в двух направлениях вдоль длинной оси структуры. Минералы с слоевой структурой образуют таблитчатые кристаллы с весьма совершенной спайностью, параллельной "слоям" структуры.

    Островные силикаты . Оливин, или перидот, (Mg,Fe) 2 , форстерит (бесцветный) Mg 2 и фаялит (черный) Fe 2 . Встречается обычно в виде зернистых агрегатов или отдельных зерен, вкрапленных в породы.

    Цвет желто-зеленый, оливковый до черного. Разновидности, содержащие мало железа, употребляются для изготовления огнеупорного кирпича, хризолит (желто-зеленая разновидность) - драгоценный камень.

    Цепочечные и ленточные силикаты и алюмосиликаты . Цепочечной структурой обладают минералы группы пироксенов, а ленточной - амфиболов. Минералам группы амфиболов свойственны длинностолбчатые, игольчатые или волокнистые шестигранные кристаллы.

    Авгит (Ca,Na) (Mg,Fe 2+ ,AlFe 3+) [(Si,Al) 2 O 6 ] встречается в кристаллических агрегатах. Цвет зеленовато- черный и черный; блеск стеклянный.

    Одним из наиболее распространенных минералов группы амфиболов является роговая обманка (Ca,Na) 2 (Mg,Fe 2+) 4(Al,Fe 3+) (OH) 2 [(Si,Al) 4 O 11 ] 2 . По свойствам близка к авгиту, отличаясь формой кристаллов и взаимным расположением плоскостей спайности, а также несколько меньшей плотностью.

    К листовым (слоевым) силикатам и алюмосиликатам относится большое количество минералов, из которых многие являются породообразующими магматических, метаморфических и глинистых осадочных горных пород. Обладают весьма совершенной спайностью в одном направлении, параллельном "листам" кристаллической структуры, и небольшой твердостью.

    Наиболее распространенными минералами этой структурной группы являются слюды, зерна которых встречаются во многих магматических и метаморфических породах; в жилах отдельные кристаллы слюд достигают в сечении нескольких квадратных метров. Происхождение магматическое, гидротермальное, метаморфическое.

    Биотит K(Mg,Fe) 3 (OH,F) 2 . Цвет черный, бурый, иногда зеленоватый; блеск стеклянный, местами перламутровый; как у всех слюд, листочки, отделяющиеся по спайности, упругие.

    Мусковит 3KAl 2 (OH) 2 по многим свойствам близок к биотиту, но имеет почти бесцветную окраску со светло-розовым или серым оттенком, прозрачен в тонких листочках. Используется в электропромышленности, радиотехнике, приборостроении, для изготовления огнестойких строительных материалов, красок, смазочных материалов и др.

    Тальк Mg 3 (OH) 2 образует кристаллические агрегаты, реже отдельные крупные кристаллы и их сростки. Цвет белый, светло-зеленый; блеск стеклянный, перламутровый, у плотных мелкозернистых агрегатов матовый; листочки, отделенные по спайности, гибкие, неупругие (на ощупь жирный). Широко используется как огнеупорный материал, при изготовлении изоляторов, в парфюмерии и пр.

    Серпентин (змеевик) Mg 6 (OH) 8 встречается обычно в виде плотных скрытокристаллических разностей. Тонковолокнистая разновидность называется хризо-асбестом. Цвет светло-зеленый, желто-зеленый до черного, часто пятнистый, у хризо-асбеста золотистый, отдельные волокна белые; блеск стеклянный, жирный, у хризо-асбеста шелковистый. Хризо-асбест используется для изготовления огнестойких и теплоизоляционных материалов.

    К листовым силикатам относится ряд минералов осадочного происхождения, образующихся при выветривании преимущественно магматических и метаморфических пород. Составляют основную часть глинистых пород. Из этих минералов наибольшим распространением пользуется каолинит Al 4 (OH) 8 , образующий землистые агрегаты. Цвет белый; блеск агрегатов матовый; излом землистый; (на ощупь жирный); легко поглощает влагу, намокая, становится пластичным. Употребляется в керамическом производстве, строительном деле, бумажной промышленности и др.

    Из каркасных алюмосиликатов рассмотрим минералы группы полевых шпатов.

    Минералы группы полевых шпатов пользуются широким распространением в земной коре, составляя в ней около 50 %. Являются породообразующими многих магматических и метаморфических горных пород. В трещинах образуют крупные кристаллы. Для всех полевых шпатов характерна спайность совершенная или средняя в двух направлениях. По химическому составу полевые пшаты делятся на две подгруппы: 1) калиевые (калинатровые, или щелочные) полевые шпаты; 2) известково- натровые (кальциево-натровые) полевые шпаты, или плагиоклазы, представляющие непрерывный изоморфный ряд Na и Са .

    Из первой подгруппы наиболее распространен ортоклаз К[А1Si 3 О 8 ] . Цвет от бесцветного, белого, светло-серого до разных оттенков розового и красно-желтого; спайность в двух направлениях. Минерал того же состава, но кристаллизующийся другому, называется микроклином. По внешним признакам микроклин неотличим от ортоклаза, и только его голубовато-зеленая разновидность - амазонит - по цвету легко отличается от других полевых шпатов.

    Калиевые полевые шпаты (особенно микроклин) из пегматитовых жил используются в керамической и стекольной промышленности.

    В подгруппу плагиоклазов входят минералы, представляющие изоморфный ряд, Среди плагиоклазов по количеству оксида кремния выделяют кислые, средние и основные минералы (табл. 1).

    Плагиоклазы по свойствам близки друг к другу и макроскопически обычно не разделяются. Исключение составляет лабрадор, у которого на сером фоне хорошо видны синие и зеленые переливы - иризация.

    Плагиоклазы макроскопически мало отличаются и от калиевых полевых шпатов. Иногда их можно различить по окраске: плагиоклазы преимущественно белые, серые, зеленовато-серые, калиевые полевые шпаты белые, светло-серые, розовые и желтые разных оттенков. Существует также различие в угле между плоскостями спайности.

    Таблица 1

    Таблица минералов изоморфного ряда плагиоклазов