Ладога испытывает воздействие трех воздушных масс. Морской воздух, приносимый циклонами с Атлантики, вызывает зимой оттепели и обильные снегопады, а летом сопровождается пасмурной и ветреной погодой. В период, когда над озером господствуют континентальные воздушные массы, поступающие с юга и востока, на побережье Ладоги стоят сухие и жаркие дни летом и морозные – зимой. Установившуюся погоду могут резко изменить вторжения с севера холодного арктического воздуха, с которым всегда связаны неожиданные похолодания и сильные ветры.

Заметное влияние на климат побережья оказывает само озеро. С апреля по июль вблизи него прохладнее, чем в прилегающих районах, а с августа по март, напротив, становится теплее – сказывается отепляющее действие Ладоги.

Средняя годовая температура воздуха на островах Ладоги около +3.5 градуса, а на побережье она изменяется от +2.6 до +3.8 градуса. Хотя протяженность озера в масштабах всей климатической зоны сравнительно небольшая, все же заметно некоторое потепление к югу и похолодание к востоку. Самое теплое место на Ладоге – южное побережье. Правда, разница в средних месячных температурах воздуха "холодного" и "теплого" берегов составляет всего лишь несколько десятых градуса. Летом на юге Ладоги воздух может нагреться до +32°. Самые сильные морозы, доходящие до -54°, отмечаются на восточном побережье. Средняя продолжительность теплого периода на Ладоге колеблется от 103 до 180 дней, причем он длиннее всего на островах.

Весна наступает в апреле. В это время на озере еще довольно холодно. Средняя температура воздуха на островах и над озером немногим выше 0, а на побережье от +1.5 до +2.5 градуса. В мае и даже в июне на смену теплым дням могут неожиданно прийти заморозки. С прекращением заморозков и установлением теплой погоды с температурой более +10 градусов начинается лето.

В июне средняя месячная температура воздуха на островах уже +12/+13, а на побережье – около +14°. Днем воздух может нагреться до 20 и более градусов в тени. Самый теплый месяц на Ладоге – июль, средняя температура которого +16/+17°.

В августе уже начинается понижение температуры, хотя в отдельные годы он может быть самым теплым месяцем. Обычно средняя температура августа +15/+16 градусов. Таким образом, период с конца июня до середины августа – наиболее теплый здесь. В конце сентября – начале октября на побережье начинаются первые заморозки.

При вторжениях теплых воздушных масс с юга в первой половине осени нередко бывают возвраты теплой погоды – "бабье лето". Тогда даже на 2-3 недели могут установиться ясные и теплые дни.

В начале ноября отрицательные температуры становятся довольно устойчивыми. И все же первая половина зимы мягкая. Нередко в декабре бывают оттепели, сопровождающиеся снегопадом с дождем. В январе и феврале оттепели реже. Это самые холодные месяцы – их средняя температура -8/-10, а в отдельные дни морозы могут достигать 40-50 градусов.

Пожалуй, ни один показатель климата не испытывает в такой мере влияния озера, как относительная влажность. Насыщенность воздуха водяными парами над озером и побережьем в среднем за год составляет 80-84 процента. Наиболее равномерно распределение влажности в зимний период. Весной и летом относительная влажность на побережье может падать до 60 процентов, тогда как над озером, особенно в его южной части и на островах, она не опускается ниже 79 процентов. В июле и августе здесь нередко стоят туманы, довольно плотные, так что на расстоянии 10 метров ничего не видно.

Несмотря на сравнительно слабое развитие облачности над Ладогой, дождливые дни здесь бывают довольно часто – до 200 в году, при этом выпадает около 600 миллиметров осадков.

Большая часть осадков – до 380 миллиметров – выпадает в теплое время года. Особенно обильны они в июле и августе, но носят характер коротких ливней, сменяющихся устойчивой ясной погодой. Весна – наиболее сухой сезон на Ладоге.

Распределение жидких осадков по озеру имеет свои особенности. Меньше всего их выпадает в центральной части – 325 миллиметров. На побережьях осадков больше: на северном и западном – 375, а на южном и юго-восточном – до 400 миллиметров.

Первый снег по берегам Ладоги выпадает в конце октября. В конце ноября – начале декабря снеговой покров становится более устойчивым. Он постепенно нарастает в течение всей зимы, достигая максимальной толщины в марте – до 40-50 сантиметров.

Большую часть года над Ладогой преобладают ветры южных направлений, особенно часто дует юго-западный ветер, или, как его называли в старину, "шелонник", по названию реки Шелони, впадающей в озеро Ильмень и имеющей сходное направление. Это название ветра было перенесено на Ладогу новгородскими судоводителями и сохранялось в виде надписей на компасах до конца прошлого столетия.

Летом наряду с южными ветрами довольно часты вторжения северных и северо-восточных ветров – "полуночника" и "меженника". Средняя скорость преобладающих ветров 6-9 м/сек в секунду над озером и 4-8 м/сек над побережьем. Шхерный район Ладоги, защищенный холмистым рельефом, отличается самыми слабыми ветрами. Средняя годовая скорость их едва превышает 3 метра. Южное побережье занимает промежуточное положение.

Однако в отдельные дни ветры могут достигать большой силы – более 15 м/сек. Они бывают 60 дней в году над озером и менее 30 дней – над побережьем. Самый "тихий" участок побережья находится в районе Приозерска. Только 2-3 дня в году здесь отмечается ветер со скоростью более 15 метров в секунду. Положительное влияние здесь оказывают залесенные сельги, ограждающие сравнительно большую территорию от мощных северных потоков воздуха.

Ветры, дующие со скоростью 10-15 метров в секунду, вызывают сильное волнение на Ладоге. Высота волн может достигать в это время 3-4 метров. Однако такие ветры обычно непродолжительны – они наблюдаются в течение 2-3 и гораздо реже – 6-7 дней подряд. Ветры, дующие со скоростью 20-24 метра в секунду, прекращаются через 5-6 часов, а еще большей силы – через 1 час. Известны случаи, когда в районе острова Валаам ветер достигал 28 и даже 34 метров в секунду.

В теплое время года из-за неодинакового прогревания воды и суши над Ладогой возникают местные ветры – бризы. Днем они дуют с озера на берег – озерный бриз, а ночью, наоборот, с берега в озеро – береговой бриз.

Характерной особенностью ладожских ветров является их неустойчивость в течение суток. И действительно, ветер резко может переменить свое направление за каких-нибудь 20-40 минут. Такая перемена нередко предвещает шторм. Было замечено, что если над озером после западных и северо-западных ветров наступает короткое затишье, а затем ветер начинает путь с севера и северо-востока все сильнее и сильнее, то штормовая погода может разыграться в течение 1-2 часов. "Эол на озере прекапризный", – говорили в старину про Ладогу.

Ладожское озеро без преувеличения можно назвать кладовой энергии солнца. Тепловой поток, падающий на его поверхность в течение года, измеряется астрономической цифрой – 14х1015 килокалорий. Этого тепла хватило бы, чтобы нагреть всю массу ладожской воды на 15 градусов. Но в действительности она нагревается всего лишь до 8 градусов. Почему так происходит° Дело в том, что поверхность озера является природным зеркалом, отражающим солнечные лучи. Летом озеро отражает 9-10 процентов лучей, зимой скованная льдом Ладога отдает в атмосферу уже половину приходящего тепла.

Другая причина потерь кроется в физических свойствах самой воды – в ее слабой теплопроводности. Вода просто не в состоянии вместить в себя полностью тепло, которое дает ей солнце.

Из-за малой теплопроводности 65 процентов поступившего в озеро тепла задерживается в верхнем метровом слое воды, а на 100-метровую глубину проникает всего лишь 1.5 процента солнечной энергии.

Обладай вода большей теплопроводностью, проникновение тепла на глубину происходило бы значительно быстрее, и потери его сократились бы. Правда, медленно нагреваясь, озеро так же медленно остывает. Оно удерживает тепло значительно дольше по сравнению с воздухом, оказывая тем самым отепляющее влияние на прибрежные районы.

Большое количество тепловой энергии затрачивается на испарение. За год из Ладоги испаряется слой воды толщиной в 300 миллиметров, что составляет объем, равный 5.5 кубического километра. Его хватило бы, чтобы заполнить такое озеро, как Ильмень.

Солнечная энергия, проникающая в толщу воды, приводит в движение водные массы озера. Даже в короткие периоды штиля, когда поверхность Ладоги зеркально-неподвижна, на глубине идет перемещение водных масс как по горизонтали, так и по вертикали. Это явление способствует перераспределению тепла в Ладоге, постепенному обогащению им все более глубоких слоев.

Накопление солнечного тепла и его распределение в воде в течение суток, сезона, года определяет температурный режим озера. У Ладоги есть свои весна, лето, осень и зима.

Весна на Ладоге начинается рано. В середине марта озеро еще сковано льдом, но уже появляются первые промоины и полыньи. Лед кое-где темнеет и трескается. Ледяной покров постепенно разрушается, но все же служит гигантским экраном, отражающим солнечные лучи. Температура воды подо льдом в это время близка к 0 градусов. На глубине около 30 метров она составляет +0.16 градуса, 50 метров – +0.67, 100 метров и более +2.4°+2.7 градуса. Но как только Ладога сбросит с себя ледяной панцирь, начинается интенсивное прогревание воды. Особенно хорошо и довольно рано прогревается она в южных мелководных губах. В июне температура воды на поверхности Волховской и Свирской губ поднимается до +16°+17 и даже +20 градусов.

В это же время вся центральная часть Ладоги занята холодными водами, образующими огромное "пятно" с температурой ниже +4 градуса. В начале июня оно еще занимает более половины площади озера. Казалось бы, что холодные воды должны смешиваться с теплыми, но этого не происходит. Перемешиванию вод препятствует так называемый термический бар, или порог (термобар), – интереснейшее явление природы, возникающее весной и осенью в больших водоемах.

Впервые на него обратил внимание в начале нашего века швейцарский ученый Ф.А.Форель, занимавшийся исследованием Женевского озера. Но случилось так, что о термобаре вскоре забыли. И только тщательные исследования, проведенные на Ладоге в 1957-1962 годах, позволили всесторонне оценить значение термобара для различных сторон жизни водоема. По сути, это было новое открытие термобара, сделанное А.И.Тихомировым.

Существование термобара обусловлено самой природой воды. Как известно, в отличие от других веществ, вода имеет наибольшую плотность не в твердом состоянии, а в жидком при температуре +4 градуса. Эта особенность приводит к тому, что весной и осенью, когда становятся возможными такие температуры в водоеме, появляется термобар. Его можно сравнить со своеобразной прозрачной перегородкой из наиболее плотной воды, тянущейся от поверхности до дна.

Возникает она на некотором расстоянии от берега на границе двух водных масс, одна из которых имеет поверхностную температуру ниже 4 градусов тепла, а другая значительно выше. Образующаяся в результате смешивания 4-градусная вода, как обладающая наибольшей, плотностью, начинает погружаться на дно, втягивая в этот процесс все новые порции поверхностной воды. Вот этот нисходящий поток наиболее плотных вод и представляет собой термобар. Достигнув дна, плотные воды медленно растекаются.

Термобар делит озеро на две области: теплоактивную, где процессы нагревания и охлаждения происходят более интенсивно, и теплоинертную, в которой они сильно замедлены. Теплоактивная область располагается вдоль побережья в зоне меньших глубин, а теплоинертная занимает центральную – глубоководную – часть.

Интересно, что весной теплые воды прибрежной зоны и холодные центральной части озера не смешиваются между собой при любом направлении ветра. Не ускоряют этот процесс и течения, возникающие в озере. Термобар служит отличным естественным барьером.

Местоположение термобара в озере довольно четко обозначается пенистой полосой. Она образуется там, где сходятся и перемешиваются воды разной температуры, после чего, достигнув максимальной плотности, они начнут свое погружение. Сюда же подтягиваются нефтепродукты, сбрасываемые судами, мелкие предметы и сор, плавающие на поверхности озера. Линия термобара хорошо заметна с судов и самолетов.

Положение фронта термического бара со временем меняется. По мере прогревания озера все большей становится теплоактивная область, оттесняющая термобар к центру озера.

На Ладоге термобар возникает ежегодно в конце апреля – первой половине мая и длится до середины июля. К этому времени вся толща воды в озере успевает прогреться до +4 градусов. Условия, необходимые для существования термобара, исчезают. Наступает летний период в жизни Ладоги, а с ним и интенсивное нагревание ее вод. В конце июля поверхностные слои озера бывают уже достаточно прогреты, но с глубины 20-25 метров и до дна чаша озера все еще заполнена холодными плотными водами.

Наиболее теплые месяцы на озере – июль и август. Средняя температура поверхности воды в эти месяцы равняется соответственно 14 и 16 градусам. Однако вода в различных районах Ладоги нагревается по-разному. Наиболее теплыми являются южные мелководные заливы и юго-восточная часть, где вода на 4-5 градусов теплее, чем у западного берега.

В начале сентября начинается осеннее охлаждение. Но одновременно с остыванием поверхностных слоев воды идет и другой процесс – проникновение тепла в глубь озера, чему способствует ветровое перемешивание, наиболее интенсивное в осенний период.

Тепло все равномернее распределяется по озеру. Наконец наступает период, когда температура воды выравнивается везде. Такое состояние носит название гомотермии. Оно длится всего несколько дней, а затем вновь начинается расслоение водной толщи, устанавливается обратная термическая стратификация: более теплые водные массы прикрываются слоем холодных вод. Раньше всего охлаждаются бухты, губы и мелкие заливы, так как запас накопленного в них тепла меньше, чем в глубоководных районах.

В конце октября – начале ноября, когда температура воды вдоль побережий опускается ниже +4 градусов, над глубинами в 7-10 метров возникает осенний термический бар. Он преграждает доступ теплым водам из центральной части озера и, постепенно отступая к середине, способствует раннему замерзанию мелководий.

Озеро вступает в зимний период своего существования. На Ладоге зима длится три месяца – с середины декабря до середины марта. Замерзание происходит постепенно – от берегов заливов и бухт. В конце декабря губы Волховская, Свирская и Петрокрепость покрываются льдом, толщина которого в теплые зимы не превышает 35-40 сантиметров.

В суровую зиму 1941/42 года лед сковал южные губы раньше обычного. Это позволило уже 22 ноября отправить первую колонну грузовых машин по "Дороге жизни". Толщина ледяного покрова, по которому проходила трасса, к концу зимы достигла 90-110 сантиметров. Это ее максимальное значение, отмеченное на Ладоге.

К середине зимы уже большая часть озера бывает покрыта льдом, за исключением района, расположенного над большими глубинами. Становление полного ледостава на Ладоге наблюдается не каждый год. Обычно под ледяным покровом скрывается только 80 процентов площади. Остается огромная полынья в центре, которая тянется в виде подковы от западного берега к восточному немного южнее Валаамского архипелага. Иногда в тихую морозную погоду эта полынья затягивается тонким слоем льда, но затем ветер вновь его разрушает.

Вскрывается Ладога в обратном порядке по сравнению с замерзанием. Раньше всего лед исчезает в губах, заливах и на прибрежных мелководьях. Большая часть льда тает на месте и только 3-5 процентов его поступает в Неву. В некоторые годы ледохода на Неве вообще не бывает – ведь ладожский лед может попасть в Неву только при восточных и северо-восточных ветрах. К концу мая озеро полностью очищается ото льда.

Два основных фактора участвовали в создании Ладоги – геология и климат. В результате геологических процессов возникла чаша озера, а климат способствовал ее наполнению и сохранению влаги в сравнительно неизменном объеме в течение тысячелетий.

Запас воды в Ладоге – 908 кубических километров. Эта величина не остается постоянной – в одни периоды она растет, в другие – падает. Правда, такие колебания по отношению к общей массе воды в озере не превышали 6 процентов, по крайней мере, за последние 100 лет. Проявляются они в изменениях уровня воды и иногда бывают настолько существенными, что вызывают даже маловодные и многоводные периоды в режиме Ладоги.

В старину длительное низкое стояние уровня нередко объяснялось влиянием сверхъестественных сил. Среди жителей деревень, разбросанных по берегам, бытовали различные легенды. Может оттого, что число 7 считалось на Руси счастливым, существовало поверье, что уровень воды на Ладоге 7 лет растет и 7 лет падает.

Наступление маловодных лет в жизни озера всегда считалось недобрым явлением. В XVIII и XIX веках оно особенно сказывалось на жизни Петербурга, экономическое развитие которого было тесно связано с судоходством. В маловодные годы из-за сильного обмеления Ладожских каналов и истока Невы судоходство было затруднено и несло большие убытки. Подвоз товаров в город сокращался, начинали расти цены на продукты, отчего в первую очередь страдала беднота.

Анализ данных об изменениях уровня за 100 лет показал, что существовавшее народное поверье о семи маловодных годах не соответствовало действительности. Зато оно в какой-то мере отражало основную особенность многолетнего уровенного режима Ладоги – его периодичность.

За последние 100 лет Ладога пережила три периода, или цикла; колебания уровня воды с продолжительностью каждого в пределах 25-33 лет. В каждом периоде выделяются две фазы – маловодная и многоводная.

Самый ближайший к нам по времени полный цикл Ладога пережила в 1932-1958 годах. Маловодная фаза этого периода началась в 1932 году, достигнув минимума в 1940 году. Средний годовой уровень воды был ниже нормального на 1 метр.

В начале 1940-х годов наступила многоводная фаза. Средний годовой уровень начал постепенно расти, достигнув максимального значения в 1958 году. Весеннее половодье в том году было в 2 раза больше обычного. Уровень воды в мае на 140 сантиметров превысил средний. Многие низменные места вблизи озера были затоплены, пострадали некоторые прибрежные постройки. Небольшие острова в шхерах целиком ушли под воду, и деревья, росшие на них, поднимались прямо из воды.

Колебания уровня воды в озере зависят не только от наступления более влажных или сухих периодов, а связаны и с сезонами года. Подъем в Ладоге начинается в апреле-мае, с момента поступления в озеро талых вод, и достигает максимума в июне. За эти три месяца уровень воды в среднем вырастает на 32 сантиметра.

В июне приток речных вод заметно сокращается, вместе с тем увеличивается сброс ладожских вод через Неву. Уже в июне обычно начинается падение уровня. В недавнее время наиболее резкое падение наблюдалось в 1952 году, когда в течение июня уровень понизился на 37 сантиметров. Самое низкое положение уровень воды занимает в январе, когда приток в озеро и сток из него становятся равными.

Колебания уровня воды на Ладоге часто зависят от ветра. Сильный ветер постоянного направления нагоняет воду в заливы и бухты, отчего уровень в них начинает быстро повышаться. В это же время на противоположном берегу происходит сгон воды, сопровождающийся понижением уровня. У скалистого северного берега из-за больших глубин нагонные явления развиты слабее, чем в мелководных южных заливах.

Произведенные расчеты показали, что для различных районов озера существует определенная зависимость между величиной нагона и силой ветра. Ветер, дующий со скоростью 5 метров в секунду, может вызвать подъем уровня на 8-10 сантиметров у южных берегов и на 5-6 сантиметров – у северных. Зато ветер силой в 15 метров способен поднять уровень воды в южных губах на 90 сантиметров. Правда, такие нагоны бывают исключительно редко, но все же бывают.

Так, в ночь с 5 на 6 июля 1929 года над озером разыгрался шторм такой силы, даже старожилы не могли припомнить что-нибудь подобное. За несколько часов уровень воды у деревни Сторожно, близ устья реки Свири, поднялся на 140-150 сантиметров. Огромные волны накатывались на берег, ломая деревья и сдвигая прибрежные камни "во много пудов весом". Еще долгое время вдоль берега на большом расстоянии от уреза воды лежали бревна, обломки деревьев и пучки водных растений, выброшенные волной во время шторма.

Сгоны воды наблюдаются реже, и падение уровня при них незначительное. Правда, в старинной рукописи "Явление во граде Орешке", относящейся к 1594 году, описывается интересный случай: во время бури ветер согнал воду с отмели у истока Невы, так что можно было реку перейти вброд.

На Ладоге существует еще и другой вид колебаний уровня, тоже не связанных с изменением запаса воды. Эти колебания возникают под влиянием внешних сил, действующих короткое время, – сильного порывистого ветра, резкого изменения давления над каким-нибудь районом озера, неравномерного выпадения осадков и др. После того как действие этих сил прекращается, вся водная масса озера приходит в движение, подобное колебанию воды в ведре во время переноски. Эти колебания уровня незначительны – всего несколько сантиметров. Они носят название стоячей волны, или сейши.

При сейшах изменение уровня имеет четко выраженную периодичность. Длина периода измеряется от 10 минут до 5 часов 40 минут, в течение которых уровень воды на озере постепенно растет и так же постепенно падает. Со временем из-за трения о берега и дно колебание водной массы затухает, и поверхность озера принимает строго горизонтальное положение. Штиль на Ладоге длится недолго.

Издревле плавание по озеру было связано с большим риском. Тысячи судов погибли в его волнах. Дошло до того, что ни одно страховое общество России не страховало суда, идущие с грузом по Ладоге. Сказывались не только слабая оснащенность судов и отсутствие хороших навигационных карт, но и природные особенности Ладоги. "Озеро бурно и наполнено каменьями", – так писал известный исследователь А. П. Андреев.

Причина сурового нрава Ладоги кроется в особенностях строения ее котловины, распределения глубин и очертаниях озера. Резкий перелом в профиле дна при переходе от больших глубин северном части к малым глубинам южной препятствует образованию "правильной" волны – по всей длине озера. Такая волна может возникнуть лишь в северной части. Когда ветры гонят ее к югу, она сохраняет свою форму только над большими глубинами.

Стоит ей попасть в район с глубинами в 15-20 метров, как волна ломается. Она становится высокой, но короткой. Ее гребень опрокидывается. Возникает сложная система волн, идущих в разных направлениях, так называемая "толчея". Она особенно опасна для небольших судов, которые испытывают неожиданные довольно сильные толчки. Известен случай, когда исследовательское судно, работавшее при волнении 3-4 балла и высоте волны 0.8 метра, испытало на себе удар, в результате которого сорвало с петель дверцы стенного шкафа, а вылетевшая на пол кают-компании посуда разбилась вдребезги.

В старину, по-видимому, во время таких неожиданных ударов выходило из строя рулевое управление или причинялись разрушения корпусу судна, что вело к неминуемой гибели его.

Была замечена и другая особенность волнения на озере. Во время шторма происходит чередование волн: группа из 4-5 высоких и длинных волн сменяется группой более низких и коротких. Такое волнение воспринимается судном как ухабистая дорога. Оно вызывает бортовую качку, отрицательно сказывающуюся на состоянии корпуса судна.

Изучение волнения на озере связано с большими трудностями. Самая высокая волна, которую удалось измерить на Ладоге, была 5.8 метра. По теоретическим расчетам, высота волны во время шторма здесь может быть и больше.

Сравнительно спокойным районом Ладоги являются южные губы, где волна в 2.5 метра бывает только при очень сильных ветрах. Самый тихий месяц на Ладоге – июль.В это время над озером большей частью стоит штиль.

Каким бы сильным или продолжительным ни было волнение на озере, основная роль в перемешивании огромной толщи воды все же принадлежит течениям. От них зависят накопление тепла в озере и распределение его по районам, очищение воды от продуктов гниения, обогащение ее кислородом, минеральными веществами и ряд других процессов, определяющих жизнь водоема.

Глубокая осень. Дни становятся всё короче и короче. Солнце выглянет на минуту из-за тяжёлых туч, скользнёт по земле своим косым лучом и снова скроется. Холодный ветер свободно гуляет по опустевшим полям и обнажённому лесу, выискивая где-нибудь ещё уцелевший цветок или прижавшийся к ветке лист, чтобы сорвать его, высоко поднять и потом бросить в ров, канаву или борозду. По утрам лужи уже покрываются хрустящими льдинками. Только глубокий пруд все ещё не хочет замёрзнуть, и ветер по-прежнему рябит его серую гладь. Но вот уже замелькали пушистые снежинки. Они подолгу крутятся в воздухе, как бы не решаясь упасть на холодную неприветливую землю. Идёт зима.

Тонкая корка льда, образовавшегося сначала у берегов пруда, ползёт на середину к более глубоким местам, и вскоре вся поверхность покрывается чистым прозрачным стеклом льда. Ударили морозы, и лёд стал толстым, чуть не в метр. Однако до дна ещё далеко. Подо льдом даже в сильные морозы сохраняется вода. Почему же глубокий пруд не промерзает до дна? Обитатели водоёмов должны быть благодарны за это одной из особенностей воды. В чём же заключается эта особенность?

Известно, что кузнец сначала нагревает железную шину, а затем надевает её на деревянный обод колеса. Охладившись, шина сделается короче и плотно обожмёт обод. Рельсы никогда не укладываются плотно друг к другу, иначе, нагревшись на солнце, они обязательно изогнутся. Если налить полную бутылку масла и поставить её в тёплую воду, то масло станет переливаться через край.

Из этих примеров ясно, что при нагревании тела расширяются; при охлаждении они сжимаются. Это справедливо почти для всех тел, но для воды этого нельзя утверждать безоговорочно. В отличие от других тел вода при нагревании ведёт себя по-особому. Если при нагревании тело расширяется, значит, оно становится менее плотным, - ведь вещества в этом теле остаётся столько же, а объём его увеличивается. При нагревании жидкостей в прозрачных сосудах можно наблюдать, как более тёплые и потому менее плотные слои поднимаются со дна вверх, а холодные опускаются вниз. На этом основано, между прочим, устройство водяного отопления с естественной циркуляцией воды. Остывая в радиаторах, вода становится плотнее, опускается вниз и поступает в котёл, вытесняя вверх уже нагретую там и потому менее плотную воду.

Подобное движение происходит и в пруду. Отдавая своё тепло холодному воздуху, вода охлаждается с поверхности пруда и, как более плотная, стремится опуститься на дно, вытесняя собой нижние тёплые, менее плотные слои. Однако такое движение будет совершаться только до тех пор, пока вся вода не остынет до плюс 4 градусов. Собравшаяся на дне при температуре 4 градуса вода уже не будет подниматься вверх, хотя бы поверхностные её слои и имели температуру более низкую. Почему?

Вода при 4 градусах имеет самую большую плотность. При всех других температурах - выше или ниже 4 градусов - вода оказывается менее плотной, чем при этой температуре.

В этом и заключается одно из отступлений воды от закономерностей, общих для других жидкостей, одна из её аномалий (аномалия - это отклонение от нормы). Плотность всех других жидкостей, как правило, начиная от температуры плавления, при нагревании уменьшается.

Что же произойдёт дальше при остывании пруда? Верхние слои воды становятся всё менее и менее плотными. Поэтому они остаются на поверхности и при нуле градусов превращаются в лёд. По мере дальнейшего остывания корка льда растёт, а под ним по-прежнему находится жидкая вода с температурой, лежащей между нулём и 4 градусами.

Здесь, вероятно, у многих возникает вопрос: почему же нижняя кромка льда не тает, если она находится в соприкосновении с водой? Потому, что тот слой воды, который непосредственно соприкасается с нижней кромкой льда, имеет температуру нуль градусов. При этой температуре одновременно существуют и лёд и вода. Для того чтобы лёд превратился в воду, необходимо, как увидим дальше, значительное количество тепла. А этого тепла нет. Лёгкий слой воды с температурой в нуль градусов отделяет ото льда более глубокие слои тёплой воды.

Но представьте теперь себе, что вода ведёт себя так, как большинство других жидкостей. Достаточно было бы незначительного мороза, как все реки, озёра, а может быть и северные моря, в течение зимы промёрзли бы до дна. Многие из живых существ подводного царства были бы обречены на гибель.

Правда, если зима очень продолжительна и сурова, то многие не слишком глубокие водоёмы могут промёрзнуть до дна. Но в наших широтах это наблюдается крайне редко. Промерзанию воды до дна препятствует и сам лёд: он плохо проводит тепло и защищает собой нижние слои воды от охлаждения.

Русская народная традиция - купаться в проруби в Крещенье, 19 января, привлекает все больше и больше людей. В этом году в Петербурге были организованы 19 прорубей, называемых «купель» или «иордань». Проруби были хорошо оснащены деревянными мостками, везде дежурили спасатели. И интересно, что, как правило, купающиеся люди говорили журналистам, что они очень довольны, вода теплая. Я сама не купалась зимой, но знаю, что вода в Неве действительно, по данным измерений была + 4 + 5 °С, что значительно теплее температуры воздуха - 8 °С.

Тот факт, что температура воды подо льдом на глубине в озерах и реках выше нуля на 4 градуса известен многим, но, как показывают обсуждения на некоторых форумах, не все понимают причину этого явления. Иногда повышение температуры связывают с давлением толстого слоя льда над водой и изменением в связи с этим температуры замерзания воды. Но большинство людей, успешно изучавших физику в школе, уверенно скажут, что температура воды на глубине связана с известным физическим явлением - изменением плотности воды с температурой. При температуре +4°С пресная вода приобретает свою наибольшую плотность .

При температурах вблизи 0 °С вода становится менее плотной и более легкой. Поэтому при охлаждении воды в водоёме до +4 °С прекращается конвекционное перемешивание воды, дальнейшее её охлаждение происходит только за счет теплопроводности (а она у воды не очень высокая) и процессы охлаждения воды резко замедляются. Даже в лютые морозы, в глубокой реке под толстым слоем льда и слоем холодной воды всегда будет вода с температурой +4 °С. До дна промерзают лишь мелкие пруды и озера.

Мы решили разобраться, почему при охлаждении вода ведет себя так странно. Оказалось, что исчерпывающее объяснение этому явлению еще не найдено. Существующие гипотезы не нашли пока экспериментального подтверждения. Надо сказать, что вода — не единственное вещество, имеющее свойство расширяться при охлаждении. Подобное поведение характерно также для висмута, галлия, кремния и сурьмы. Однако именно вода вызывает наибольший интерес, поскольку является веществом, очень важным для жизнедеятельности человека и всего растительного и животного мира.

Одна из теорий - существование в воде двух типов наноструктур высокой и низкой плотности, которые изменяются с температурой и порождают аномальное изменение плотности. Ученые, изучающие процессы переохлаждения расплавов, выдвигают следующее объяснение. При охлаждении жидкости ниже температуры плавления внутренняя энергия системы уменьшается, подвижность молекул снижается. В то же самое время усиливается роль межмолекулярных связей, за счет которых могут формироваться разнообразные надмолекулярные частицы. Опыты ученых с переохлажденным жидким о_терфенилом позволили предположить, что в переохлажденной жидкости со временем может образовываться динамическая «сетка» из более плотно упакованных молекул. Эта сетка разделяется на ячейки (области). Молекулярные переупаковки внутри ячейки задают скорость вращения молекул в ней, а более медленная перестройка самой сетки приводит к изменению этой скорости во времени. Что-то подобное может происходить и в воде.

В 2009 г. японский физик Масакадзу Мацумото, используя компьютерное моделирование, выдвинул свою теорию изменения плотности воды и опубликовал ее в журнале Physical Review Letters (Why Does Water Expand When It Cools?) («Почему вода при охлаждении расширяется?»). Как известно, в жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют тетраэдральный угол, равный 109,47 градуса.

Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, препятствуют такому объединению, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами. В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

На рисунке шесть типичных витритов, образующих внутреннюю структуру воды. Шарики соответствуют молекулам воды, отрезки между шариками обозначают водородные связи. Рис. из статьи Masakazu Matsumoto, Akinori Baba, and Iwao Ohminea.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами, некоторые витриты принимают структурно неравновесные конфигурации, которые позволяют всей системе в целом получить наименьшее значение энергии среди возможных. Такие назвали фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом. Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры, по мнению ученых, вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты,преобладает, что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Это объяснение основано пока только на компьютерном моделировании. Экспериментально его очень трудно подтвердить. Исследование интересных и необычных свойств воды продолжается.

Источники

О.В. Александрова, М.В. Марченкова, Е.А. Покинтелица «Анализ термических эффектов, характеризующих кристаллизацию переохлажденных расплавов» (Донбасская национальная академия строительства и архитектуры)

Ю. Ерин. Предложена новая теория, объясняющая, почему вода при нагревании от 0 до 4°C сжимается (

В средней полосе России фенологическая (природная) зима наступает обычно с середины ноября. К этому времени заканчивается столь нелюбимый рыболовами период «межсезонья» с его перепадами атмосферного давления и температуры, чередованием заморозков и дождей, капризами многих видов рыб. Почитатели зимней рыбалки считают собственно зимой временной отрезок с момента образования устойчивого ледового покрова до распаления льда (с середины ноября по конец марта). Иногда ледовый покров на водоемах появляется на месяц-полтора позже начала календарной зимы (где-то в начале-середине января). Чаще это происходит в южных районах России. В некоторых регионах СНГ на реках и озерах вообще не устанавливается ледовый покров и разница между затянувшейся осенью и незаметно наступившей зимой практически незаметна.

С наступлением зимы в водных си­стемах происходят значительные из­менения, влияющие на поведение подводных обитателей.

Ледовый покров, освещенность и поведение рыб.

Значение света в жизни животных трудно переоценить. Свет «господ­ствует» над всеми другими экологическими факторами. Ни один фактор среды не претерпевает таких изме­нений, как освещенность: в течение суток ее интенсивность изменяется в десятки миллионов раз (от сотен люк­сов до десятитысячных долей люкса). По своей интенсивности и длитель­ности освещенность играет для во­дных живых организмов роль сигнала начала неких перемен в окружающей среде (наступление утра, ночи, нача­ло прогрева воды и-т. д.), что приво­дит к изменению поведения рыб.

На протяжении осени и начала зимы происходит постепенное уменьшен ние светлого периода суток: в ноябре долгота светового дня в среднем не превышает 9 часов 10 минут. Установ­ление ледового покрова, выпадение снега, преобладание пасмурных дней еще больше снижает освещенность водоемов. Долгие четыре месяца в подводном царстве властвует полуть­ма…

Интересно поведение рыб в на­чальный период зимы. Многие виды теплолюбивых рыб (сазан (карп), ка­рась, линь, белый амур) еще в октя­бре-ноябре собираются в огромные стаи и отправляются на так называе­мые зимовальные ямы. В полуоцепе­нении, практически не двигаясь, они проведут здесь около трех месяцев (до конца февраля). Сазаны стоят на глубине очень плотно, порой до 15-20 особей на 1 м3, рядом находятся же­рехи, язи, лини. При больших морозах с ними соседствуют и лещи, но с пере­меной атмосферного давления и при ослаблении морозов стаи лещей по­кидают зимовальные ямы и «разбре­даются» по водоему в поисках корма.

Опровергая общепринятую точку зрения о местоположении зимней «лежки» сомов, речные великаны за­нимают места около зимовальных ям - на выходах из глубин, границах ям и повышений дна. Такое размещение усатых хищников объясняется тем, что в самой яме уже спустя месяц после образования ледового покрова резко изменяется кислородный режим, что эта рыба в отличии от «толстокожего» сазана (карпа) тяжело переносит.

Окуни, щуки, судаки после осеннего ската на более глубокие места (уход от высокой прозрачности воды и значительной освещенности) с уста­новлением ледового покрова воз­вращаются на места сентябрьских охот. Тем более, что плотва, карась серебристый, верховка и уклейка за редкими исключениями, практически не уходят с облюбованных еще летом мест обитания.

В мелких и малокормных водоемах карась серебристый зарывается под листья или «ныряет» в ил. Правда, только в северных районах нахожде­ние его там продолжительно, в более южных местностях двигательная активность карася возобновляется уже при увеличении температуры воды на 3,5°С (февраль). Поэтому во время не слишком холодных зим в Украине, Казахстане и других регионах под­ледная ловля серебристого карася - обычное дело.

Появление ледового покрова вносит свои коррективы в поведение хищ­ных рыб. Различают такое разделе­ние хищников по отношению к свету: окунь считается сумеречно-дневным хищником, щука - сумеречным, судак - глубокосумеречным.
Осенью окуни и щуки питаются кру­глосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и пресле­дуют жертв. «Сумеречное» питание хищников происходит при освещен­ности от сотен до десятых долей люк­сов (вечером) и наоборот (утром). Судак может пользоваться зрением в тех условиях, когда другие рыбы ви­деть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент - гуанин, который увеличива­ет ее чувствительность. Охота судака за мелкими стайными рыбами наи­более успешна при глубоко сумереч­ной освещенности - 0,001 и 0,0001 лк (практически полная темнота).

В сумерках и в предутренние часы у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные обо­ронительные стаи рыб-жертв начинают распадаться, обеспечивая удач­ную охоту хищникам. С наступлением темноты отдельные рыбешки рассре­доточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и за­мирают. Охота хищных рыб на это время прекращается.

В начале зимы ситуация подо льдом меняется. Полутьма «на руку» именно сумеречным хищникам, которые в первые дни установления ледового покрова устраивают деморализо­ванным жертвам «варфоломеевскую ночь». Хищным рыбам уже не надо распределять время своей охоты на раннее утро и вечерние часы. Так на­чинается и продолжается (обычно не очень долго) знаменитый жором хищ­ника «перволедок».
Кстати, зимой резко снижается ре­акция рыб-жертв на угрозу, верховки и уклейки намного слабее реагируют на «запах страха», выделяемый товар­ками при схватывании их хищником.

При поиске хищника на обширных водоемах совсем необязательно ис­кать его на ямах и в коряжниках. На­много чаще его можно обнаружить близ участков льда, свободных от снега: слабый, рассеянный свет, про­никающий на глубину, на протяжении всей зимы привлекает столь любимых судаком уклейку и верховку.

Очищенные от снега участки льда привлекают также и молодь окуней, которая собирается у тускло освещен­ного места «твердой поверхности» во­доема через 15-20 минут. Подводные исследования показали, что влечение к слабому свету испытывают и взрос­лые окуни, которые подходят чуть позже молоди. Причем, в отличие от «недорослей», горбачи избегают осве­щенного участка и барражируют во­круг него в темноте.

Температура воды и поведение рыб.

Температура водной среды - самый значительный природный фактор, который прямо воздействует на уровень обмена веществ пойкилотермных (не­сколько неудачный термин-синоним - «холоднокровных») животных, к ко­торым относятся и рыбы.

Всех рыб по диапазону температур, при котором возможна их нормаль­ная жизнедеятельность, разделяют на теплолюбивых (плотва, сазан (карп), карась, линь, растительноядные виды (толстолобики, белый амур), осетро­вые и прочие) и холодолюбивых (ру­чьевая форель, сиги, лосось, налим и др.).

Обмен веществ у первых предста­вителей наиболее эффективен при высокой температуре. Они наиболее интенсивно питаются и активны при температуре +17-28°С, при пониже­нии температуры воды до +17°С их пищевая активность ослабевает (а зи­мой у многих видов вообще прекра­щается). Предзимье и всю зиму они проводят в малоподвижном состоянии в глубоких местах водоема.

Для холодолюбивых рыб оптимальные температуры +8-16°С. Зимой они активно питаются, а их нерест проис­ходит в осенне-зимний период.

Известно, что к похолоданию и снижению температуры воды рыба «привыкает», перестраивая свой ме­таболизм только за 17-20 суток. При снижении температуры воды с +12°С до +4°С у хариуса, например, вели­чины энергозатрат уменьшаются на 20%.
С понижением температуры воды увеличивается растворимость кисло­рода, поэтому зимой насыщенность воды кислородом достаточно высо­ка.

При длительном понижении темпе­ратуры воды рыбы должны располагать не только достаточным запасом жира как энергетического материала, но и в течение этого периода сохра­нить нормальный обмен веществ.

Рыболовная стратегия зимой.

Почитателей зимней рыбалки в отдельных регионах СНГ порой больше, чем летних любителей порыбачить. Несмотря на непредсказуемые ка­призы погоды и порой необъяснимое отсутствие клева подводных оби­тателей, зимой возможна отличная рыбалка. Следует только четко пред­ставлять, «просчитывать» ситуацию на конкретном водоеме. Надо знать, что на протяжении зимы как минимум 20-35 видов рыб (в разных водоемах по-разному) продолжают интенсив­но откармливаться, порой не взирая даже на перепады атмосферного дав­ления.

Естественно, для каждого конкрет­ного вида нужен свой, особый под­ход, который обязательно принесет удачу рыболову - экспериментатору при наличии у него определенного рыболовного опыта, знания особен­ностей поведения рыб в этот период года и, конечно же, страстного желания поймать свой трофей!..

Почему вода в водоёмах зимой не промерзает до самого дна?

    Здравствуйте!

    Температура наибольшей плотности воды: +4 С см: http://news.mail.ru/society/2815577/

    Это свойство воды является принципиально важным для выживания живности многих водомов. Когда начинается понижение температуры воздуха (и соответственно — воды) осенью и в предзимье, сначала при температуре выше +4 С более холодная вода с поверхности водома опускается вниз (как более тяжлая), а тплая, как более лгкая, поднимается вверх и идт обычное вертикальное перемешивание воды. Но как только во всм водоме по вертикали устанавливается Т= +4 С, процесс вертикальной циркуляции останавливается, поскольку с поверхности вода уже при +3С становится легче той, что находится ниже (при +4С) и турбулентная теплопередача холода по вертикали резко сокращается. В итоге с поверхности вода даже начинает замерзать, потом устанавливается и ледяной покров, но при этом в зимний период передача холода в нижние слои воды резко уменьшается, так как и сам слой льда сверху, и тем более, слой выпавшего на лд сверху снега обладают определ1нными теплоизоляционными свойствами! Поэтому у дна водома почти всегда остатся хотя бы тонкий слой воды при Т=+4С — а это и есть температура выживания в водоме речной, болотной, озрной и пр. живности. Если бы не это интересное и важное свойство воды (Мах плотность при +4С), то водомы на суше все промерзали бы до дна каждую зиму, и жизнь в них не была бы такой обильной!

    Всего доброго!

    Здесь работает очень важное свойство воды. Твердая вода (лед) легче своего жидкого состояния. Благодаря этому лед всегда находится сверху и защищает нижние слои воды от мороза. Только очень мелкие водоемы в очень сильный мороз могут промерзать до дна. В обычных случаях под слоем льда всегда находится вода, в которой сохраняется вся подводная жизнедеятельность.

    Все зависит от силы морозов,иногда даже глубокие стоячие водоемы могут замерзать до дна. если морозы под минус 40 стоят несколько недель. Но в основном, действительно, водоемы не промерзают, что дает возможность выжить обитающим в них рыбам и растениям. А дело тут в таком любопытном свойстве воды, как отрицательный коэффициент расширения, который имеет вода при температуре от +4 градусов и ниже. То есть если вода нагрета выше 4 градусов, то при увеличении ее температуры она будет стремиться занять больший объем, ее плотность уменьшается и он поднимается вверх. Если же вода остывает ниже 4 градусов ситуация меняется на противоположную — чем холоднее вода, тем легче она становится и тем меньше ее плотность, а следовательно более холодные слои воды стремятся наверх, а имеющие температуру +4- вниз. Таким образом подо льдом температура воду устанавливается в +4 градуса. Пограничные слои воды рядом со льдом будут либо подтапливать лед, либо подмерзать сами, увеличивая толщину льда, пока не установится динамическое равновесие — сколько льда растает от теплой воды, столько воды замерзнет от холодного льда. Ну а про теплопроводность льда сказано уже все.

    Вы упустили очень важный момент: самая большая плотность воды — при температуре +4 градуса. Поэтому, прежде чем водоем начнет замерзать, вся вода в нем, перемешиваясь, охлаждается до этих самых плюс четырех, а уж затем верхний слой охлаждается до нуля и начинает замерзать. Так как лед легче воды, он не опускается на дно, а остается на поверхности. Кроме того, лед имеет очень малую теплопроводность и это резко уменьшает теплообмен между холодным воздухом и слоем воды подо льдом.