Ecuația unei drepte care trece prin acest punct in aceasta directie. Ecuația unei drepte care trece prin două puncte date. Unghiul dintre două linii drepte. Condiția de paralelism și perpendicularitate a două drepte. Determinarea punctului de intersecție a două drepte

1. Ecuația unei drepte care trece printr-un punct dat A(X 1 , y 1) într-o direcție dată, determinată de pantă k,

y - y 1 = k(X - X 1). (1)

Această ecuație definește un creion de linii care trec printr-un punct A(X 1 , y 1), care se numește centrul fasciculului.

2. Ecuația unei drepte care trece prin două puncte: A(X 1 , y 1) și B(X 2 , y 2), scris astfel:

Coeficientul unghiular al unei drepte care trece prin două puncte date este determinat de formula

3. Unghiul dintre liniile drepte AȘi B este unghiul cu care trebuie rotită prima linie dreaptă Aîn jurul punctului de intersecție al acestor linii în sens invers acelor de ceasornic până când acesta coincide cu a doua linie B. Dacă două drepte sunt date de ecuaţii cu pantă

y = k 1 X + B 1 ,

Proprietățile unei drepte în geometria euclidiană.

Un număr infinit de linii drepte pot fi trase prin orice punct.

Prin oricare două puncte necoincidente poate fi trasată o singură linie dreaptă.

Două drepte divergente dintr-un plan fie se intersectează într-un singur punct, fie sunt

paralel (urmează din precedentul).

În spațiul tridimensional, există trei opțiuni pentru poziția relativă a două linii:

  • liniile se intersectează;
  • liniile sunt paralele;
  • linii drepte se intersectează.

Drept linia— curbă algebrică de ordinul întâi: o dreaptă în sistemul de coordonate carteziene

este dat pe plan de o ecuație de gradul I (ecuație liniară).

Ecuația generală a unei drepte.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

și constantă A, B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește general

ecuația unei linii drepte.În funcție de valorile constantelor A, BȘi CU Sunt posibile următoarele cazuri speciale:

. C = 0, A ≠0, B ≠ 0- o linie dreaptă trece prin origine

. A = 0, B ≠0, C ≠0 (Prin + C = 0)- linie dreaptă paralelă cu axa Oh

. B = 0, A ≠0, C ≠ 0 (Ax + C = 0)- linie dreaptă paralelă cu axa OU

. B = C = 0, A ≠0- linia dreaptă coincide cu axa OU

. A = C = 0, B ≠0- linia dreaptă coincide cu axa Oh

Ecuația unei linii drepte poate fi reprezentată în sub diverse formeîn funcţie de orice dat

condiții inițiale.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. Într-un sistem de coordonate dreptunghiular cartezian, un vector cu componente (A, B)

perpendicular pe dreapta dată de ecuație

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte care trece printr-un punct A(1, 2) perpendicular pe vector (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x - y + C = 0. Pentru a găsi coeficientul C

Să substituim coordonatele punctului dat A în expresia rezultată, obținem: 3 - 2 + C = 0, deci

C = -1. Total: ecuația necesară: 3x - y - 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Să fie date două puncte în spațiu M 1 (x 1 , y 1 , z 1)Și M2 (x 2, y 2, z 2), Apoi ecuația unei linii,

trecând prin aceste puncte:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero. Pe

plan, ecuația dreptei scrise mai sus este simplificată:

Dacă x 1 ≠ x 2Și x = x 1, Dacă x 1 = x 2 .

Fracțiune = k numit pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și o pantă.

Dacă ecuație generală Drept Ax + Wu + C = 0 duce la:

și desemnează , atunci ecuația rezultată se numește

ecuația unei drepte cu panta k.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei linii drepte prin vectorul normal, puteți intra în sarcină

o dreaptă printr-un punct și un vector de direcție al unei drepte.

Definiție. Fiecare vector diferit de zero (α 1 , α 2), ale căror componente satisfac condiția

Aα 1 + Bα 2 = 0 numit vector de direcție al unei linii drepte.

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției,

coeficienții trebuie să îndeplinească următoarele condiții:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0.

la x = 1, y = 2 primim C/A = -3, adică ecuația necesară:

x + y - 3 = 0

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la -С, obținem:

sau unde

Sensul geometric coeficienții este că coeficientul a este coordonata punctului de intersecție

drept cu axa Oh, A b- coordonata punctului de intersecție a dreptei cu axa OU.

Exemplu. Este dată ecuația generală a unei drepte x - y + 1 = 0. Găsiți ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + Wu + C = 0împărțiți la număr Care e numit

factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 -ecuația normală a unei linii.

Semnul ± al factorului de normalizare trebuie ales astfel încât μ*C< 0.

R- lungimea perpendicularei coborâte de la origine la linia dreaptă,

A φ - unghiul format de aceasta perpendiculara cu directia pozitiva a axei Oh.

Exemplu. Este dată ecuația generală a dreptei 12x - 5y - 65 = 0. Necesar pentru a scrie diferite tipuri de ecuații

această linie dreaptă.

Ecuația acestei drepte în segmente:

Ecuația acestei drepte cu panta: (împarte la 5)

Ecuația unei linii:

cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, linii drepte,

paralel cu axele sau trecând prin origine.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două rânduri y = k 1 x + b 1 , y = k 2 x + b 2, apoi unghiul ascuțit dintre aceste linii

va fi definit ca

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare

Dacă k 1 = -1/ k 2 .

Teorema.

Direct Ax + Wu + C = 0Și A 1 x + B 1 y + C 1 = 0 paralel când coeficienții sunt proporționali

A1 = λA, B1 = λB. Dacă de asemenea С 1 = λС, apoi liniile coincid. Coordonatele punctului de intersecție a două drepte

se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată.

Definiție. Linie care trece printr-un punct M 1 (x 1, y 1)și perpendicular pe linie y = kx + b

reprezentat de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă se acordă un punct M(x 0, y 0), apoi distanța până la linia dreaptă Ax + Wu + C = 0 definit ca:

Dovada. Lasă punctul M 1 (x 1, y 1)- baza unei perpendiculare coborâte dintr-un punct M pentru un dat

direct. Apoi distanța dintre puncte MȘi M 1:

(1)

Coordonatele x 1Și la 1 poate fi găsită ca soluție a sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular

linie dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Linia care trece prin punctul K(x 0 ; y 0) și paralelă cu dreapta y = kx + a se găsește prin formula:

y - y 0 = k(x - x 0) (1)

Unde k este panta dreptei.

Formula alternativa:
O dreaptă care trece prin punctul M 1 (x 1 ; y 1) și paralelă cu dreapta Ax+By+C=0 este reprezentată prin ecuație

A(x-x1)+B(y-y1)=0. (2)

Scrieți o ecuație pentru o dreaptă care trece prin punctul K( ;) paralelă cu dreapta y = x+ .
Exemplul nr. 1. Scrieți o ecuație pentru o dreaptă care trece prin punctul M 0 (-2,1) și în același timp:
a) paralel cu dreapta 2x+3y -7 = 0;
b) perpendicular pe dreapta 2x+3y -7 = 0.
Soluţie . Să ne imaginăm ecuația cu panta sub forma y = kx + a. Pentru a face acest lucru, mutați toate valorile cu excepția y în partea dreaptă: 3y = -2x + 7 . Apoi împărțiți partea dreaptă cu un factor de 3. Se obține: y = -2/3x + 7/3
Să găsim ecuația NK care trece prin punctul K(-2;1), paralelă cu dreapta y = -2 / 3 x + 7 / 3
Înlocuind x 0 = -2, k = -2 / 3, y 0 = 1 obținem:
y-1 = -2 / 3 (x-(-2))
sau
y = -2 / 3 x - 1 / 3 sau 3y + 2x +1 = 0

Exemplul nr. 2. Scrieți ecuația unei drepte paralele cu dreapta 2x + 5y = 0 și formând împreună cu axele de coordonate un triunghi a cărui aria este 5.
Soluţie . Deoarece liniile sunt paralele, ecuația dreptei dorite este 2x + 5y + C = 0. Aria triunghi dreptunghic, unde a și b sunt picioarele sale. Să găsim punctele de intersecție ale liniei dorite cu axele de coordonate:
;
.
Deci, A(-C/2,0), B(0,-C/5). Să o înlocuim în formula pentru zonă: . Obținem două soluții: 2x + 5y + 10 = 0 și 2x + 5y – 10 = 0.

Exemplul nr. 3. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2; 5) și paralelă cu dreapta 5x-7y-4=0.
Soluţie. Această linie dreaptă poate fi reprezentată prin ecuația y = 5 / 7 x – 4 / 7 (aici a = 5 / 7). Ecuația dreptei dorite este y – 5 = 5 / 7 (x – (-2)), adică. 7(y-5)=5(x+2) sau 5x-7y+45=0.

Exemplul nr. 4. După ce am rezolvat exemplul 3 (A=5, B=-7) folosind formula (2), găsim 5(x+2)-7(y-5)=0.

Exemplul nr. 5. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2;5) și paralelă cu dreapta 7x+10=0.
Soluţie. Aici A=7, B=0. Formula (2) dă 7(x+2)=0, adică. x+2=0. Formula (1) nu este aplicabilă, deoarece această ecuație nu poate fi rezolvată în raport cu y (această linie dreaptă este paralelă cu axa ordonatelor).

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte. In functie de valori constanta A, Bși C sunt posibile următoarele cazuri speciale:

C = 0, A ≠0, B ≠ 0 – dreapta trece prin origine

A = 0, B ≠0, C ≠0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

B = 0, A ≠0, C ≠ 0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

B = C = 0, A ≠0 – linia dreaptă coincide cu axa Oy

A = C = 0, B ≠0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și vector normal

Definiție.În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată, obținem: 3 – 2 + C = 0, prin urmare, C = -1 . Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este egal cu zero, numărătorul corespunzător ar trebui să fie egal cu zero. În plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1 ≠ x 2 și x = x 1, dacă x 1 = x 2.

Se numește fracția = k pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte dintr-un punct și panta

Dacă totalul Ax + Bu + C = 0, duce la forma:

și desemnează , atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția unei drepte printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero (α 1, α 2), ale cărui componente îndeplinesc condiția A α 1 + B α 2 = 0 se numește vector de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0. pentru x = 1, y = 2 obținem C/ A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la –С, obținem: sau

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt înmulțite cu numărul Care e numit factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 –

ecuația normală a unei linii. Semnul ± al factorului de normalizare trebuie ales astfel încât μ * C< 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

; cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Croială dreaptă la axele de coordonate segmente pozitive egale. Scrieți o ecuație a unei drepte dacă aria triunghiului format din aceste segmente este de 8 cm2.

Soluţie. Ecuația dreptei are forma: , ab /2 = 8; ab=16; a=4, a=-4. a = -4< 0 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Soluţie. Ecuația dreptei este: , unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte pe un plan

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare dacă k 1 = -1/ k 2.

Teorema. Dreptele Ax + Bу + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A 1 = λA, B 1 = λB sunt proporționali. Dacă și C 1 = λC, atunci liniile coincid. Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la punct la linie

Teorema. Dacă este dat un punct M(x 0, y 0), atunci distanța până la dreapta Ax + Bу + C = 0 este determinată ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

(1)

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Exemplu. Să se determine unghiul dintre drepte: y = -3 x + 7; y = 2 x + 1.

k1 = -3; k2 = 2; tgφ = ; φ= π /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Soluţie. Găsim: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B (6; 5), C (12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Soluţie. Găsim ecuația laturii AB: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b. k = . Atunci y = . Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație: de unde b = 17. Total: .

Răspuns: 3 x + 2 y – 34 = 0.

Lecție din seria „Algoritmi geometrici”

Bună dragă cititor!

Astăzi vom începe să învățăm algoritmi legați de geometrie. Cert este că există destul de multe probleme la olimpiade în informatică legate de geometria computațională, iar rezolvarea unor astfel de probleme provoacă adesea dificultăți.

Pe parcursul mai multor lecții, vom lua în considerare o serie de subsarcini elementare pe care se bazează soluția majorității problemelor din geometria computațională.

În această lecție vom crea un program pentru aflarea ecuatiei unei drepte, trecând prin dat două puncte. Pentru a rezolva probleme geometrice, avem nevoie de anumite cunoștințe de geometrie computațională. Vom dedica o parte a lecției cunoașterii lor.

Perspective din geometria computațională

Geometria computațională este o ramură a informaticii care studiază algoritmii pentru rezolvarea problemelor geometrice.

Datele inițiale pentru astfel de probleme pot fi un set de puncte pe un plan, un set de segmente, un poligon (specificat, de exemplu, printr-o listă a vârfurilor sale în ordinea acelor de ceasornic), etc.

Rezultatul poate fi fie un răspuns la o întrebare (cum ar fi un punct aparține unui segment, două segmente se intersectează, ...), fie un obiect geometric (de exemplu, cel mai mic poligon convex care leagă punctele date, aria de un poligon etc.).

Vom lua în considerare probleme de geometrie computațională doar în plan și numai în sistemul de coordonate carteziene.

Vectori și coordonate

Pentru a aplica metodele geometriei computaționale, este necesară traducerea imaginilor geometrice în limbajul numerelor. Vom presupune că planului i se dă un sistem de coordonate carteziene, în care direcția de rotație în sens invers acelor de ceasornic este numită pozitivă.

Acum obiectele geometrice primesc o expresie analitică. Deci, pentru a specifica un punct, este suficient să indicați coordonatele acestuia: o pereche de numere (x; y). Un segment poate fi specificat prin specificarea coordonatelor capetelor sale; o linie dreaptă poate fi specificată prin specificarea coordonatele unei perechi de puncte.

Dar principalul nostru instrument pentru rezolvarea problemelor vor fi vectorii. Prin urmare, permiteți-mi să amintesc câteva informații despre ei.

Segment de linie AB, care are rost A este considerat începutul (punctul de aplicare) și punctul ÎN– sfârșit, numit vector ABși este notat cu oricare sau printr-o literă mică aldine, de exemplu A .

Pentru a desemna lungimea unui vector (adică lungimea segmentului corespunzător), vom folosi simbolul modulului (de exemplu, ).

Un vector arbitrar va avea coordonate egale cu diferența dintre coordonatele corespunzătoare ale sfârșitului și începutului său:

,

aici sunt punctele AȘi B au coordonate respectiv.

Pentru calcule vom folosi conceptul unghi orientat, adică un unghi care ține cont de poziția relativă a vectorilor.

Unghi orientat între vectori A Și b pozitiv dacă rotația este din vector A a vector b se efectuează în sens pozitiv (în sens invers acelor de ceasornic) și negativ în celălalt caz. Vezi Fig.1a, Fig.1b. Se mai spune că o pereche de vectori A Și b orientat pozitiv (negativ).

Astfel, valoarea unghiului de orientare depinde de ordinea în care sunt listați vectorii și pot lua valori în interval.

Multe probleme din geometria computațională folosesc conceptul de produse vectoriale (înclinate sau pseudoscalare) ale vectorilor.

Produsul vectorial al vectorilor a și b este produsul dintre lungimile acestor vectori și sinusul unghiului dintre ei:

.

Produsul încrucișat al vectorilor în coordonate:

Expresia din dreapta este un determinant de ordinul doi:

Spre deosebire de definiția dată în geometria analitică, este un scalar.

Semnul produsului vectorial determină poziția vectorilor unul față de celălalt:

A Și b orientat pozitiv.

Dacă valoarea este , atunci o pereche de vectori A Și b orientat negativ.

Produsul încrucișat al vectorilor nenuli este zero dacă și numai dacă sunt coliniari ( ). Aceasta înseamnă că se află pe aceeași linie sau pe linii paralele.

Să ne uităm la câteva probleme simple care sunt necesare atunci când rezolvăm altele mai complexe.

Să determinăm ecuația unei drepte din coordonatele a două puncte.

Ecuația unei drepte care trece prin două puncte diferite specificate de coordonatele lor.

Să fie date două puncte necoincidente pe o dreaptă: cu coordonatele (x1; y1) și cu coordonatele (x2; y2). În consecință, un vector cu un început într-un punct și un sfârșit într-un punct are coordonate (x2-x1, y2-y1). Dacă P(x, y) este un punct arbitrar pe dreapta noastră, atunci coordonatele vectorului sunt egale cu (x-x1, y – y1).

Folosind produsul vectorial, condiția de coliniaritate a vectorilor și poate fi scrisă după cum urmează:

Acestea. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Rescriem ultima ecuație după cum urmează:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Deci, linia dreaptă poate fi specificată printr-o ecuație de forma (1).

Problema 1. Sunt date coordonatele a două puncte. Găsiți reprezentarea sa sub forma ax + by + c = 0.

În această lecție am învățat câteva informații despre geometria computațională. Am rezolvat problema găsirii ecuației unei drepte din coordonatele a două puncte.

În lecția următoare, vom crea un program pentru a găsi punctul de intersecție a două drepte date de ecuațiile noastre.