Acest articol dezvăluie derivarea ecuației unei drepte care trece prin două puncte date într-un sistem de coordonate dreptunghiular situat pe un plan. Să derivăm ecuația unei drepte care trece prin două puncte date într-un sistem de coordonate dreptunghiular. Vom arăta și rezolva clar câteva exemple legate de materialul acoperit.

Yandex.RTB R-A-339285-1

Înainte de a obține ecuația unei drepte care trece prin două puncte date, este necesar să se acorde atenție unor fapte. Există o axiomă care spune că prin două puncte divergente dintr-un plan se poate trasa o dreaptă și numai una. Cu alte cuvinte, două puncte date dintr-un plan sunt definite de o dreaptă care trece prin aceste puncte.

Dacă planul este definit de sistemul de coordonate dreptunghiular Oxy, atunci orice linie dreaptă descrisă în el va corespunde ecuației unei linii drepte pe plan. Există și o legătură cu vectorul de direcție al dreptei.Aceste date sunt suficiente pentru a compila ecuația unei drepte care trece prin două puncte date.

Să ne uităm la un exemplu de rezolvare a unei probleme similare. Este necesar să se creeze o ecuație pentru o dreaptă a care trece prin două puncte divergente M 1 (x 1, y 1) și M 2 (x 2, y 2), situate în sistemul de coordonate carteziene.

În ecuația canonică a unei drepte pe un plan, având forma x - x 1 a x = y - y 1 a y, se specifică un sistem de coordonate dreptunghiular O x y cu o dreaptă care se intersectează cu ea într-un punct cu coordonatele M 1 (x 1, y 1) cu un vector de ghidare a → = (a x , a y) .

Este necesar să se creeze o ecuație canonică a unei drepte a, care va trece prin două puncte cu coordonatele M 1 (x 1, y 1) și M 2 (x 2, y 2).

Dreapta a are un vector de direcție M 1 M 2 → cu coordonate (x 2 - x 1, y 2 - y 1), deoarece intersectează punctele M 1 și M 2. Am obținut datele necesare pentru a transforma ecuația canonică cu coordonatele vectorului de direcție M 1 M 2 → = (x 2 - x 1, y 2 - y 1) și coordonatele punctelor M 1 aflate pe acestea. (x1, y1) şi M2 (x2, y2). Obținem o ecuație de forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 sau x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1.

Luați în considerare figura de mai jos.

În urma calculelor, scriem ecuații parametrice linie dreaptă pe planul care trece prin două puncte cu coordonatele M 1 (x 1, y 1) și M 2 (x 2, y 2). Obținem o ecuație de forma x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ sau x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ .

Să aruncăm o privire mai atentă la rezolvarea mai multor exemple.

Exemplul 1

Scrieți ecuația unei drepte care trece prin 2 puncte date cu coordonatele M 1 - 5, 2 3, M 2 1, - 1 6.

Soluţie

Ecuația canonică pentru o dreaptă care se intersectează în două puncte cu coordonatele x 1, y 1 și x 2, y 2 ia forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1. Conform condițiilor problemei, avem că x 1 = - 5, y 1 = 2 3, x 2 = 1, y 2 = - 1 6. Este necesar să se înlocuiască valori numericeîn ecuația x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1. De aici rezultă că ecuația canonică ia forma x - (- 5) 1 - (- 5) = y - 2 3 - 1 6 - 2 3 ⇔ x + 5 6 = y - 2 3 - 5 6.

Răspuns: x + 5 6 = y - 2 3 - 5 6.

Dacă trebuie să rezolvați o problemă cu un alt tip de ecuație, atunci mai întâi puteți merge la cea canonică, deoarece este mai ușor să veniți de la ea la oricare alta.

Exemplul 2

Compuneți ecuația generală a unei drepte care trece prin puncte cu coordonatele M 1 (1, 1) și M 2 (4, 2) în sistemul de coordonate O x y.

Soluţie

În primul rând, trebuie să scrieți ecuația canonică a unei linii date care trece prin două puncte date. Obținem o ecuație de forma x - 1 4 - 1 = y - 1 2 - 1 ⇔ x - 1 3 = y - 1 1 .

Să aducem ecuația canonică la forma dorită, apoi obținem:

x - 1 3 = y - 1 1 ⇔ 1 x - 1 = 3 y - 1 ⇔ x - 3 y + 2 = 0

Răspuns: x - 3 y + 2 = 0 .

Exemple de astfel de sarcini au fost discutate în manualele școlare în timpul lecțiilor de algebră. Sarcinile școlare diferă prin aceea că se cunoaște ecuația unei drepte cu coeficient unghiular, având forma y = k x + b. Dacă trebuie să găsiți valoarea pantei k și numărul b pentru care ecuația y = k x + b definește o dreaptă în sistemul O x y care trece prin punctele M 1 (x 1, y 1) și M 2 ( x 2, y 2) , unde x 1 ≠ x 2. Când x 1 = x 2 , atunci coeficientul unghiular ia valoarea infinitului, iar linia dreaptă M 1 M 2 este definită de generalul ecuație incompletă de forma x - x 1 = 0 .

Pentru că punctele M 1Și M 2 sunt pe o linie dreaptă, atunci coordonatele lor satisfac ecuația y 1 = k x 1 + b și y 2 = k x 2 + b. Este necesar să se rezolve sistemul de ecuații y 1 = k x 1 + b y 2 = k x 2 + b pentru k și b.

Pentru a face acest lucru, găsim k = y 2 - y 1 x 2 - x 1 b = y 1 - y 2 - y 1 x 2 - x 1 x 1 sau k = y 2 - y 1 x 2 - x 1 b = y 2 - y 2 - y 1 x 2 - x 1 x 2 .

Cu aceste valori ale lui k și b, ecuația unei linii care trece prin cele două puncte date ia următoarea vedere y = y 2 - y 1 x 2 - x 1 x + y 2 - y 2 - y 1 x 2 - x 1 x 1 sau y = y 2 - y 1 x 2 - x 1 x + y 2 - y 2 - y 1 x 2 - x 1 x 2.

Este imposibil să ne amintim un număr atât de mare de formule simultan. Pentru a face acest lucru, este necesar să creșteți numărul de repetări în rezolvarea problemelor.

Exemplul 3

Scrieți ecuația unei drepte cu un coeficient unghiular care trece prin puncte cu coordonatele M 2 (2, 1) și y = k x + b.

Soluţie

Pentru a rezolva problema, folosim o formulă cu un coeficient unghiular de forma y = k x + b. Coeficienții k și b trebuie să ia o astfel de valoare încât această ecuație să corespundă unei drepte care trece prin două puncte cu coordonatele M 1 (- 7, - 5) și M 2 (2, 1).

Puncte M 1Și M 2 sunt situate pe o linie dreaptă, atunci coordonatele lor trebuie să facă din ecuația y = k x + b o egalitate adevărată. De aici rezultă că - 5 = k · (- 7) + b și 1 = k · 2 + b. Să combinăm ecuația în sistem - 5 = k · - 7 + b 1 = k · 2 + b și să rezolvăm.

La înlocuire obținem asta

5 = k · - 7 + b 1 = k · 2 + b ⇔ b = - 5 + 7 k 2 k + b = 1 ⇔ b = - 5 + 7 k 2 k - 5 + 7 k = 1 ⇔ ⇔ b = - 5 + 7 k k = 2 3 ⇔ b = - 5 + 7 2 3 k = 2 3 ⇔ b = - 1 3 k = 2 3

Acum, valorile k = 2 3 și b = - 1 3 sunt înlocuite în ecuația y = k x + b. Constatăm că ecuația necesară care trece prin punctele date va fi o ecuație de forma y = 2 3 x - 1 3 .

Această metodă de soluție predetermina cheltuielile cantitate mare timp. Există o modalitate prin care sarcina este rezolvată în literalmente doi pași.

Să scriem ecuația canonică a dreptei care trece prin M 2 (2, 1) și M 1 (- 7, - 5), având forma x - (- 7) 2 - (- 7) = y - (- 5). ) 1 - (- 5) ⇔ x + 7 9 = y + 5 6 .

Acum să trecem la ecuația pantei. Obținem că: x + 7 9 = y + 5 6 ⇔ 6 · (x + 7) = 9 · (y + 5) ⇔ y = 2 3 x - 1 3.

Răspuns: y = 2 3 x - 1 3 .

Dacă în spațiul tridimensional există un sistem de coordonate dreptunghiular O x y z cu două puncte date necoincidente cu coordonatele M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), dreapta M trecând prin ele 1 M 2 , este necesar să se obţină ecuaţia acestei drepte.

Avem asta ecuații canonice de forma x - x 1 a x = y - y 1 a y = z - z 1 a z și parametrice de forma x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ sunt capabile să definească o dreaptă în coordonatele sistemului O x y z, care trece prin puncte având coordonate (x 1, y 1, z 1) cu un vector de direcție a → = (a x, a y, a z).

Drept M 1 M 2 are un vector de direcție de forma M 1 M 2 → = (x 2 - x 1, y 2 - y 1, z 2 - z 1), unde dreapta trece prin punctul M 1 (x 1, y 1, z 1) și M 2 (x 2 , y 2 , z 2), deci ecuația canonică poate fi de forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 sau x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1, la rândul său parametric x = x 1 + (x 2 - x 1 ) λ y = y 1 + (y 2 - y 1) λ z = z 1 + (z 2 - z 1) λ sau x = x 2 + (x 2 - x 1) λ y = y 2 + (y 2 - y 1) · λ z = z 2 + (z 2 - z 1) · λ .

Luați în considerare un desen care arată 2 puncte date în spațiu și ecuația unei drepte.

Exemplul 4

Scrieți ecuația unei drepte definite într-un sistem de coordonate dreptunghiular O x y z al spațiului tridimensional, care trece prin două puncte date cu coordonatele M 1 (2, - 3, 0) și M 2 (1, - 3, - 5).

Soluţie

Este necesar să găsim ecuația canonică. Deoarece despre care vorbim despre spațiul tridimensional, ceea ce înseamnă că atunci când o dreaptă trece prin puncte date, ecuația canonică dorită va lua forma x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 .

Prin condiție avem că x 1 = 2, y 1 = - 3, z 1 = 0, x 2 = 1, y 2 = - 3, z 2 = - 5. Rezultă că ecuațiile necesare se vor scrie după cum urmează:

x - 2 1 - 2 = y - (- 3) - 3 - (- 3) = z - 0 - 5 - 0 ⇔ x - 2 - 1 = y + 3 0 = z - 5

Răspuns: x - 2 - 1 = y + 3 0 = z - 5.

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

În acest articol vom lua în considerare ecuația generală a unei drepte pe un plan. Să dăm exemple de construcție a unei ecuații generale a unei drepte dacă sunt cunoscute două puncte ale acestei drepte sau dacă se cunosc un punct și vectorul normal al acestei drepte. Să introducem metode de transformare a ecuației în vedere generalaîn vederi canonice și parametrice.

Să fie dat un sistem de coordonate dreptunghiular cartezian arbitrar Oxy. Luați în considerare ecuația de gradul întâi sau ecuație liniară:

Ax+By+C=0, (1)

Unde A, B, C− unele constante, și cel puțin unul dintre elemente AȘi B diferit de zero.

Vom arăta că o ecuație liniară pe un plan definește o dreaptă. Să demonstrăm următoarea teoremă.

Teorema 1. Într-un sistem de coordonate cartezian dreptunghiular arbitrar pe un plan, fiecare dreaptă poate fi specificată printr-o ecuație liniară. În schimb, fiecare ecuație liniară (1) dintr-un sistem de coordonate cartezian dreptunghiular arbitrar pe un plan definește o dreaptă.

Dovada. Este suficient să demonstrăm că linia dreaptă L este determinată de o ecuație liniară pentru orice sistem de coordonate carteziene dreptunghiulare, deoarece atunci va fi determinată de o ecuație liniară pentru orice sistem de coordonate carteziene dreptunghiulare.

Să fie dată o linie dreaptă pe plan L. Să alegem un sistem de coordonate astfel încât axa Bou a coincis cu o linie dreaptă L, și axa Oi era perpendicular pe acesta. Apoi ecuația dreptei L va lua următoarea formă:

y=0. (2)

Toate punctele de pe o linie L va satisface ecuația liniară (2), iar toate punctele din afara acestei linii nu vor satisface ecuația (2). Prima parte a teoremei a fost demonstrată.

Să fie dat un sistem de coordonate dreptunghiular cartezian și să fie dată o ecuație liniară (1), unde cel puțin unul dintre elemente AȘi B diferit de zero. Să găsim locul geometric al punctelor ale căror coordonate satisfac ecuația (1). Deoarece cel puţin unul dintre coeficienţi AȘi B este diferită de zero, atunci ecuația (1) are cel puțin o soluție M(X 0 ,y 0). (De exemplu, când A≠0, punct M 0 (−C/A, 0) aparține locului geometric dat al punctelor). Înlocuind aceste coordonate în (1) obținem identitatea

Topor 0 +De 0 +C=0. (3)

Să scădem identitatea (3) din (1):

A(XX 0)+B(yy 0)=0. (4)

Evident, ecuația (4) este echivalentă cu ecuația (1). Prin urmare, este suficient să demonstrăm că (4) definește o anumită linie.

Deoarece luăm în considerare un sistem de coordonate dreptunghiular cartezian, din egalitatea (4) rezultă că vectorul cu componente ( x−x 0 , y−y 0 ) ortogonală cu vectorul n cu coordonate ( A,B}.

Să luăm în considerare o linie dreaptă L, trecând prin punct M 0 (X 0 , y 0) și perpendicular pe vector n(Fig.1). Lasă punctul M(X,y) aparține liniei L. Apoi vectorul cu coordonatele x−x 0 , y−y 0 perpendiculară nși ecuația (4) este satisfăcută (produsul scalar al vectorilor nși egal cu zero). Dimpotrivă, dacă punct M(X,y) nu se află pe o linie L, apoi vectorul cu coordonatele x−x 0 , y−y 0 nu este ortogonal cu vectorul n iar ecuația (4) nu este satisfăcută. Teorema a fost demonstrată.

Dovada. Deoarece liniile (5) și (6) definesc aceeași linie, atunci vectorii normali n 1 ={A 1 ,B 1) și n 2 ={A 2 ,B 2) coliniare. Din moment ce vectori n 1 ≠0, n 2 ≠0, atunci există un astfel de număr λ , Ce n 2 =n 1 λ . De aici avem: A 2 =A 1 λ , B 2 =B 1 λ . Să demonstrăm asta C 2 =C 1 λ . Evident, liniile coincidente au punct comun M 0 (X 0 , y 0). Înmulțirea ecuației (5) cu λ și scăzând ecuația (6) din ea obținem:

Deoarece primele două egalități din expresiile (7) sunt satisfăcute, atunci C 1 λ C 2 =0. Acestea. C 2 =C 1 λ . Observația a fost dovedită.

Rețineți că ecuația (4) definește ecuația dreptei care trece prin punct M 0 (X 0 , y 0) și având un vector normal n={A,B). Prin urmare, dacă vectorul normal al unei linii și punctul aparținând acestei linii sunt cunoscute, atunci ecuația generală a dreptei poate fi construită folosind ecuația (4).

Exemplul 1. O dreaptă trece printr-un punct M=(4,−1) și are un vector normal n=(3, 5). Construiți ecuația generală a unei drepte.

Soluţie. Avem: X 0 =4, y 0 =−1, A=3, B=5. Pentru a construi ecuația generală a unei linii drepte, înlocuim aceste valori în ecuația (4):

Răspuns:

Vectorul este paralel cu dreapta Lși, prin urmare, perperdicular pe vectorul normal al dreptei L. Să construim un vector linie normal L, dat fiind produs scalar vectori nși egal cu zero. Putem scrie, de exemplu, n={1,−3}.

Pentru a construi ecuația generală a unei linii drepte, folosim formula (4). Să înlocuim coordonatele punctului în (4) M 1 (putem lua și coordonatele punctului M 2) și vector normal n:

Înlocuind coordonatele punctelor M 1 și M 2 în (9) ne putem asigura că dreapta dată de ecuația (9) trece prin aceste puncte.

Răspuns:

Scădeți (10) din (1):

Am obținut ecuația canonică a dreptei. Vector q={−B, A) este vectorul de direcție al dreptei (12).

Vezi conversia inversă.

Exemplul 3. O dreaptă pe un plan este reprezentată de următoarea ecuație generală:

Să mutam al doilea termen la dreapta și să împărțim ambele părți ale ecuației la 2·5.

Ecuația unei drepte pe un plan.

După cum se știe, orice punct din plan este determinat de două coordonate într-un sistem de coordonate. Sistemele de coordonate pot fi diferite în funcție de alegerea bazei și a originii.

Definiție. Ecuația liniilor se numeşte relaţia y = f(x) între coordonatele punctelor care alcătuiesc această dreaptă.

Rețineți că ecuația unei linii poate fi exprimată parametric, adică fiecare coordonată a fiecărui punct este exprimată printr-un parametru independent t.

Un exemplu tipic este traiectoria unui punct în mișcare. În acest caz, rolul parametrului este jucat de timp.

Ecuația unei drepte pe un plan.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp, adică. A 2 + B 2  0. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.

În funcție de valorile constantelor A, B și C, sunt posibile următoarele cazuri speciale:

    C = 0, A  0, B  0 – dreapta trece prin origine

    A = 0, B  0, C  0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

    B = 0, A  0, C  0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

    B = C = 0, A  0 – linia dreaptă coincide cu axa Oy

    A = C = 0, B  0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe vector (3, -1).

Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată.

Se obține: 3 – 2 + C = 0, deci C = -1.

Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero.

Pe plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1  x 2 și x = x 1, dacă x 1 = x 2.

Fracțiune
=k se numește pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + By + C = 0 se reduce la forma:

și desemnează
, atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția dreptei printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero ( 1,  2), ale cărei componente îndeplinesc condiția A 1 + B 2 = 0 se numește vectorul de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și trecând prin punctul A(1, 2).

Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1A + (-1)B = 0, adică. A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C/A = 0.

la x = 1, y = 2 obținem C/A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С 0, atunci, împărțind la –С, obținem:
sau

, Unde

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1,
, a = -1,b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt împărțite la număr
Care e numit factor de normalizare, apoi primim

xcos + ysin - p = 0 –

ecuația normală a unei linii.

Semnul  al factorului de normalizare trebuie ales astfel încât С< 0.

p este lungimea perpendicularei coborâte de la origine la dreapta, iar  este unghiul format de această perpendiculară cu direcția pozitivă a axei Ox.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

ecuația normală a unei linii:

; cos = 12/13; sin = -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație a unei drepte dacă aria triunghiului format din aceste segmente este de 8 cm2.

Ecuația dreptei este:
, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 nu este potrivit în funcție de condițiile problemei.

Total:
sau x + y – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Ecuația dreptei este:
, unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2.

Două drepte sunt perpendiculare dacă k 1 = -1/k 2 .

Teorema. Linii directe Ax + Wu + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A sunt proporționali 1 = A, B 1 = B. Dacă și C 1 = C, atunci liniile coincid.

Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat

perpendicular pe această dreaptă.

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă este dat punctul M(x). 0 , y 0 ), atunci distanța până la linia dreaptă Ах + Ву + С =0 este definită ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată.

Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

.

Teorema a fost demonstrată.

Exemplu. Determinați unghiul dintre drepte: y = -3x + 7; y = 2x + 1.

k1 = -3; k 2 = 2 tg =
;  = /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Găsim: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B(6; 5), C(12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Găsim ecuația laturii AB:
; 4x = 6y – 6;

2x – 3y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b.

k = . Atunci y =
. Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație:
de unde b = 17. Total:
.

Răspuns: 3x + 2y – 34 = 0.

Geometrie analitică în spațiu.

Ecuația unei drepte în spațiu.

Ecuația unei drepte în spațiu dat un punct și

vector de direcție.

Să luăm o linie arbitrară și un vector (m, n, p), paralel cu dreapta dată. Vector numit vector ghid Drept.

Pe linie dreaptă luăm două puncte arbitrare M 0 (x 0 , y 0 , z 0) și M (x, y, z).

z

M 1

Să notăm vectorii de rază ai acestor puncte ca Și , este evident că - =
.

Deoarece vectori
Și sunt coliniare, atunci relația este adevărată
= t, unde t este un parametru.

În total, putem scrie: = + t.

Deoarece această ecuație este satisfăcută de coordonatele oricărui punct de pe linie, atunci ecuația rezultată este ecuația parametrică a unei linii.

Această ecuație vectorială poate fi reprezentată sub formă de coordonate:

Transformând acest sistem și echivalând valorile parametrului t, obținem ecuațiile canonice ale unei linii drepte în spațiu:

.

Definiție. Cosinusuri de direcție directe sunt cosinusurile de direcție ale vectorului , care poate fi calculat folosind formulele:

;

.

De aici obținem: m: n: p = cos : cos : cos.

Se numesc numerele m, n, p coeficienții de unghi Drept. Deoarece este un vector diferit de zero, atunci m, n și p nu pot fi egali cu zero în același timp, dar unul sau două dintre aceste numere pot fi egale cu zero. În acest caz, în ecuația dreptei, numărătorii corespunzători ar trebui setați egali cu zero.

Ecuația unei drepte în spațiul care trece

prin două puncte.

Dacă pe o dreaptă în spațiu notăm două puncte arbitrare M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), atunci coordonatele acestor puncte trebuie să satisfacă ecuația dreptei. obtinut mai sus:

.

În plus, pentru punctul M 1 putem scrie:

.

Rezolvând împreună aceste ecuații, obținem:

.

Aceasta este ecuația unei drepte care trece prin două puncte din spațiu.

Ecuații generale ale unei drepte în spațiu.

Ecuația unei drepte poate fi considerată drept ecuația dreptei de intersecție a două plane.

După cum sa discutat mai sus, un plan în formă vectorială poate fi specificat prin ecuația:

+ D = 0, unde

- plan normal; - raza este vectorul unui punct arbitrar din plan.

Ecuația unei drepte care trece printr-un punct dat într-o direcție dată. Ecuația unei drepte care trece prin două puncte date. Unghiul dintre două linii drepte. Condiția de paralelism și perpendicularitate a două drepte. Determinarea punctului de intersecție a două drepte

1. Ecuația unei drepte care trece printr-un punct dat A(X 1 , y 1) într-o direcție dată, determinată de pantă k,

y - y 1 = k(X - X 1). (1)

Această ecuație definește un creion de linii care trec printr-un punct A(X 1 , y 1), care se numește centrul fasciculului.

2. Ecuația unei drepte care trece prin două puncte: A(X 1 , y 1) și B(X 2 , y 2), scris astfel:

Coeficientul unghiular al unei drepte care trece prin două puncte date este determinat de formula

3. Unghiul dintre liniile drepte AȘi B este unghiul cu care trebuie rotită prima linie dreaptă Aîn jurul punctului de intersecție al acestor linii în sens invers acelor de ceasornic până când acesta coincide cu a doua linie B. Dacă două drepte sunt date de ecuaţii cu pantă

y = k 1 X + B 1 ,

Linia care trece prin punctul K(x 0 ; y 0) și paralelă cu dreapta y = kx + a se găsește prin formula:

y - y 0 = k(x - x 0) (1)

Unde k este panta dreptei.

Formula alternativa:
O dreaptă care trece prin punctul M 1 (x 1 ; y 1) și paralelă cu dreapta Ax+By+C=0 este reprezentată prin ecuație

A(x-x1)+B(y-y1)=0. (2)

Scrieți o ecuație pentru o dreaptă care trece prin punctul K( ;) paralelă cu dreapta y = x+ .
Exemplul nr. 1. Scrieți o ecuație pentru o dreaptă care trece prin punctul M 0 (-2,1) și în același timp:
a) paralel cu dreapta 2x+3y -7 = 0;
b) perpendicular pe dreapta 2x+3y -7 = 0.
Soluţie . Să ne imaginăm ecuația cu panta sub forma y = kx + a. Pentru a face acest lucru, mutați toate valorile cu excepția y în partea dreaptă: 3y = -2x + 7 . Apoi împărțiți partea dreaptă cu un factor de 3. Se obține: y = -2/3x + 7/3
Să găsim ecuația NK care trece prin punctul K(-2;1), paralelă cu dreapta y = -2 / 3 x + 7 / 3
Înlocuind x 0 = -2, k = -2 / 3, y 0 = 1 obținem:
y-1 = -2 / 3 (x-(-2))
sau
y = -2 / 3 x - 1 / 3 sau 3y + 2x +1 = 0

Exemplul nr. 2. Scrieți ecuația unei drepte paralele cu dreapta 2x + 5y = 0 și formând împreună cu axele de coordonate un triunghi a cărui aria este 5.
Soluţie . Deoarece liniile sunt paralele, ecuația dreptei dorite este 2x + 5y + C = 0. Aria triunghi dreptunghic, unde a și b sunt picioarele sale. Să găsim punctele de intersecție ale liniei dorite cu axele de coordonate:
;
.
Deci, A(-C/2,0), B(0,-C/5). Să o înlocuim în formula pentru zonă: . Obținem două soluții: 2x + 5y + 10 = 0 și 2x + 5y – 10 = 0.

Exemplul nr. 3. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2; 5) și paralelă cu dreapta 5x-7y-4=0.
Soluţie. Această linie dreaptă poate fi reprezentată prin ecuația y = 5 / 7 x – 4 / 7 (aici a = 5 / 7). Ecuația dreptei dorite este y – 5 = 5 / 7 (x – (-2)), adică. 7(y-5)=5(x+2) sau 5x-7y+45=0.

Exemplul nr. 4. După ce am rezolvat exemplul 3 (A=5, B=-7) folosind formula (2), găsim 5(x+2)-7(y-5)=0.

Exemplul nr. 5. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2;5) și paralelă cu dreapta 7x+10=0.
Soluţie. Aici A=7, B=0. Formula (2) dă 7(x+2)=0, adică. x+2=0. Formula (1) nu este aplicabilă, deoarece această ecuație nu poate fi rezolvată în raport cu y (această linie dreaptă este paralelă cu axa ordonatelor).