1) Domeniul funcției și domeniul de funcții.

    Domeniul unei funcții este setul tuturor valorilor argumentelor valide X(variabil X), pentru care funcția y = f(x) determinat. Domeniul unei funcții este mulțimea tuturor valorilor reale y, pe care funcția îl acceptă.

    În matematica elementară, funcțiile sunt studiate numai pe mulțimea numerelor reale.

    2) Zerourile funcției.

    Funcția zero este valoarea argumentului la care valoarea funcției este egală cu zero.

    3) Intervale de semn constant al unei funcții.

    Intervalele de semn constant ale unei funcții sunt seturi de valori ale argumentului pe care valorile funcției sunt doar pozitive sau numai negative.

    4) Monotonitatea funcției.

    O funcţie crescătoare (într-un anumit interval) este o funcţie pentru care valoare mai mare argumentului din acest interval îi corespunde o valoare mai mare a funcției.

    O funcție descrescătoare (într-un anumit interval) este o funcție în care o valoare mai mare a argumentului din acest interval îi corespunde unei valori mai mici a funcției.

    5) Funcția par (impar)..

    O funcție pară este o funcție al cărei domeniu de definiție este simetric față de origine și pentru oricare X din domeniul definirii egalitatea f(-x) = f(x). Graficul unei funcții pare este simetric față de ordonată.

    O funcție impară este o funcție al cărei domeniu de definiție este simetric față de origine și pentru oricare X din domeniul definiției egalitatea este adevărată f(-x) = - f(x). Graficul unei funcții impare este simetric față de origine.

    6) Funcții limitate și nelimitate.

    O funcție se numește mărginită dacă există un număr M pozitiv astfel încât |f(x)| ≤ M pentru toate valorile lui x. Dacă un astfel de număr nu există, atunci funcția este nelimitată.

    7) Periodicitatea funcției.

    O funcție f(x) este periodică dacă există un număr T diferit de zero, astfel încât pentru orice x din domeniul de definire al funcției să fie valabile următoarele: f(x+T) = f(x). Acest număr cel mai mic se numește perioada funcției. Toate funcții trigonometrice sunt periodice. (Formulele trigonometrice).

    19. Funcții elementare de bază, proprietățile și graficele lor. Aplicarea funcțiilor în economie.

Funcții elementare de bază. Proprietățile și graficele lor

1. Funcția liniară.

Funcție liniară se numește funcție de forma , unde x este o variabilă, a și b sunt numere reale.

Număr A numită panta dreptei, este egală cu tangentei unghiului de înclinare a acestei linii la direcția pozitivă a axei x. Graficul unei funcții liniare este o linie dreaptă. Este definit de două puncte.

Proprietățile unei funcții liniare

1. Domeniul definiției - mulțimea tuturor numerelor reale: D(y)=R

2. Mulțimea valorilor este mulțimea tuturor numerelor reale: E(y)=R

3. Funcția ia o valoare zero când sau.

4. Funcția crește (descrește) pe întregul domeniu de definire.

5. Funcție liniară continuă pe întregul domeniu al definiției, diferențiabilă și .

2. Funcția pătratică.

O funcție de forma, unde x este o variabilă, coeficienții a, b, c sunt numere reale, se numește pătratică

The material metodologic este doar pentru referință și se aplică unei game largi de subiecte. Articolul oferă o prezentare generală a graficelor funcțiilor elementare de bază și ia în considerare cea mai importantă problemă - cum să construiți un grafic corect și RAPID. În cursul studierii matematicii superioare fără cunoștințe de grafice de bază functii elementare Va fi greu, așa că este foarte important să vă amintiți cum arată graficele unei parabole, hiperbole, sinus, cosinus etc. și amintiți-vă câteva dintre valorile funcției. Vom vorbi și despre câteva proprietăți ale principalelor funcții.

Nu pretind completitudinea și temeinicia științifică a materialelor; accentul va fi pus, în primul rând, pe practică - acele lucruri cu care se întâlnește literalmente la fiecare pas, în orice subiect de matematică superioară. Grafice pentru manechine? S-ar putea spune așa.

Datorită numeroaselor solicitări din partea cititorilor cuprins pe care se poate face clic:

În plus, există un rezumat ultra-scurt pe această temă
– stăpânește 16 tipuri de diagrame studiind șase pagini!

Serios, șase, chiar și eu am fost surprins. Acest rezumat conține grafică îmbunătățită și este disponibil pentru o taxă nominală; o versiune demo poate fi vizualizată. Este convenabil să imprimați fișierul, astfel încât graficele să fie întotdeauna la îndemână. Vă mulțumim pentru susținerea proiectului!

Și să începem imediat:

Cum se construiesc corect axele de coordonate?

În practică, testele sunt aproape întotdeauna finalizate de către elevi în caiete separate, aliniate într-un pătrat. De ce ai nevoie de marcaje în carouri? La urma urmei, munca, în principiu, se poate face pe coli A4. Și cușca este necesară doar pentru proiectarea de înaltă calitate și precisă a desenelor.

Orice desen al unui grafic de funcții începe cu axe de coordonate.

Desenele pot fi bidimensionale sau tridimensionale.

Să luăm mai întâi în considerare cazul bidimensional Sistemul de coordonate carteziene dreptunghiulare:

1) Desenați axele de coordonate. Axa se numește axa x , iar axa este axa y . Întotdeauna încercăm să le desenăm îngrijită și nu strâmbă. De asemenea, săgețile nu ar trebui să semene cu barba lui Papa Carlo.

2) Etichetați axele cu litere mari„X” și „Y”. Nu uitați să etichetați axele.

3) Setați scara de-a lungul axelor: trageți un zero și doi uni. Când faceți un desen, scara cea mai convenabilă și folosită frecvent este: 1 unitate = 2 celule (desen din stânga) - dacă este posibil, rămâneți de ea. Totuși, din când în când se întâmplă ca desenul să nu încapă pe foaia caietului - atunci reducem scara: 1 unitate = 1 celulă (desen din dreapta). Este rar, dar se întâmplă ca scara desenului să fie redusă (sau mărită) și mai mult

NU ESTE NEVOIE să „mitralieră” …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Căci planul de coordonate nu este un monument al lui Descartes, iar elevul nu este un porumbel. Am pus zeroȘi două unități de-a lungul axelor. Uneori în loc de unități, este convenabil să „marcați” alte valori, de exemplu, „două” pe axa absciselor și „trei” pe axa ordonatelor - și acest sistem (0, 2 și 3) va defini, de asemenea, în mod unic grila de coordonate.

Este mai bine să estimați dimensiunile estimate ale desenului ÎNAINTE de a construi desenul. Deci, de exemplu, dacă sarcina necesită desenarea unui triunghi cu vârfuri , , , atunci este complet clar că scara populară de 1 unitate = 2 celule nu va funcționa. De ce? Să ne uităm la punctul - aici va trebui să măsurați cincisprezece centimetri mai jos și, evident, desenul nu se va potrivi (sau abia se va potrivi) pe o foaie de caiet. Prin urmare, selectăm imediat o scară mai mică: 1 unitate = 1 celulă.

Apropo, despre centimetri și celule de notebook. Este adevărat că 30 de celule de notebook conțin 15 centimetri? Pentru distracție, măsurați 15 centimetri în caiet cu o riglă. În URSS, s-ar putea să fi fost adevărat... Este interesant de observat că dacă măsurați acești centimetri pe orizontală și pe verticală, rezultatele (în celule) vor fi diferite! Strict vorbind, caietele moderne nu sunt în carouri, ci dreptunghiulare. Acest lucru poate părea o prostie, dar desenarea, de exemplu, a unui cerc cu o busolă în astfel de situații este foarte incomod. Sincer să fiu, în astfel de momente începi să te gândești la corectitudinea tovarășului Stalin, care a fost trimis în lagăre pentru muncă de hack în producție, ca să nu mai vorbim de industria auto autohtonă, căderea avioanelor sau exploziile centralelor electrice.

Apropo de calitate, sau o scurtă recomandare despre papetărie. Astăzi, majoritatea caietelor aflate în vânzare sunt, cel puțin, o porcărie completă. Din motivul că se udă, și nu numai de la pixurile cu gel, ci și de la pixurile cu bilă! Economisesc bani pe hârtie. Pentru a finaliza testele, recomand să folosiți caiete de la Fabrica de celuloză și hârtie din Arkhangelsk (18 coli, pătrat) sau „Pyaterochka”, deși este mai scump. Este recomandabil să alegeți un pix cu gel; chiar și cea mai ieftină umplutură de gel chinezească este mult mai bună decât un pix, care fie pătează, fie rupe hârtia. Singurul pix „competitiv” pe care mi-l amintesc este Erich Krause. Ea scrie clar, frumos și consecvent – ​​fie cu miezul plin, fie cu unul aproape gol.

În plus: Viziunea unui sistem de coordonate dreptunghiulare prin ochii geometriei analitice este acoperită în articol Dependența liniară (non) a vectorilor. Baza vectorilor, informatii detaliate despre sferturi de coordonate pot fi găsite în al doilea paragraf al lecției Inegalități liniare.

carcasă 3D

Aici este aproape la fel.

1) Desenați axele de coordonate. Standard: axa aplicate – îndreptată în sus, axa – îndreptată spre dreapta, axa – îndreptată în jos spre stânga strict la un unghi de 45 de grade.

2) Etichetați axele.

3) Setați scara de-a lungul axelor. Scara de-a lungul axei este de două ori mai mică decât scara de-a lungul celorlalte axe. De asemenea, rețineți că în desenul din dreapta am folosit o „crestătură” non-standard de-a lungul axei (această posibilitate a fost deja menționată mai sus). Din punctul meu de vedere, acest lucru este mai precis, mai rapid și mai plăcut din punct de vedere estetic - nu este nevoie să căutați mijlocul celulei la microscop și să „sculptați” o unitate apropiată de originea coordonatelor.

Când faceți un desen 3D, acordați din nou prioritate la scară
1 unitate = 2 celule (desen din stânga).

Pentru ce sunt toate aceste reguli? Regulile sunt facute pentru a fi incalcate. Asta voi face acum. Cert este că desenele ulterioare ale articolului vor fi făcute de mine în Excel, iar axele de coordonate vor arăta incorect din punctul de vedere al designului corect. Aș putea desena toate graficele manual, dar este de fapt înfricoșător să le desenezi, deoarece Excel este reticent să le deseneze mult mai precis.

Grafice și proprietăți de bază ale funcțiilor elementare

O funcție liniară este dată de ecuație. Graficul funcțiilor liniare este direct. Pentru a construi o linie dreaptă este suficient să cunoaștem două puncte.

Exemplul 1

Construiți un grafic al funcției. Să găsim două puncte. Este avantajos să alegeți zero ca unul dintre puncte.

Daca atunci

Să luăm un alt punct, de exemplu, 1.

Daca atunci

La finalizarea sarcinilor, coordonatele punctelor sunt de obicei rezumate într-un tabel:


Și valorile însele sunt calculate oral sau pe o schiță, un calculator.

Au fost găsite două puncte, să facem desenul:


Când pregătim un desen, semnăm întotdeauna grafica.

Ar fi util să amintim cazuri speciale ale unei funcții liniare:


Observați cum am pus semnăturile, semnăturile nu trebuie să permită discrepanțe la studierea desenului. În acest caz, a fost extrem de nedorit să se pună o semnătură lângă punctul de intersecție al liniilor sau în dreapta jos între grafice.

1) O funcție liniară de forma () se numește proporționalitate directă. De exemplu, . Un grafic de proporționalitate directă trece întotdeauna prin origine. Astfel, construirea unei linii drepte este simplificată - este suficient să găsiți doar un punct.

2) O ecuație de formă specifică o linie dreaptă paralelă cu axa, în special, axa însăși este dată de ecuație. Graficul funcției este reprezentat imediat, fără a găsi niciun punct. Adică, intrarea trebuie înțeleasă după cum urmează: „y este întotdeauna egal cu –4, pentru orice valoare a lui x”.

3) O ecuație de formă specifică o linie dreaptă paralelă cu axa, în special, axa însăși este dată de ecuație. Graficul funcției este de asemenea trasat imediat. Intrarea ar trebui să fie înțeleasă după cum urmează: „x este întotdeauna, pentru orice valoare a lui y, egal cu 1”.

Unii se vor întreba, de ce să-ți amintești de clasa a VI-a?! Așa este, poate așa este, dar de-a lungul anilor de practică am întâlnit o duzină de studenți care au fost derutați de sarcina de a construi un grafic ca sau.

Construirea unei linii drepte este cea mai comună acțiune la realizarea desenelor.

Linia dreaptă este discutată în detaliu în cursul geometriei analitice, iar cei interesați se pot referi la articol Ecuația unei drepte pe un plan.

Graficul unei funcții pătratice, cubice, graficul unui polinom

Parabolă. Graficul unei funcții pătratice () reprezintă o parabolă. Luați în considerare celebrul caz:

Să ne amintim câteva proprietăți ale funcției.

Deci, soluția ecuației noastre: – în acest punct se află vârful parabolei. De ce este așa poate fi învățat din articolul teoretic despre derivată și din lecția despre extremele funcției. Între timp, să calculăm valoarea „Y” corespunzătoare:

Astfel, vârful este în punct

Acum găsim alte puncte, în timp ce folosim cu nerăbdare simetria parabolei. Trebuie remarcat faptul că funcția nu este chiar, dar, cu toate acestea, nimeni nu a anulat simetria parabolei.

În ce ordine să găsim punctele rămase, cred că va fi clar din masa finală:

Acest algoritm de construcție poate fi numit în mod figurat „navetă” sau principiul „înainte și înapoi” cu Anfisa Cehova.

Să facem desenul:


Din graficele examinate, îmi vine în minte o altă caracteristică utilă:

Pentru o funcție pătratică () următoarele este adevărată:

Dacă , atunci ramurile parabolei sunt îndreptate în sus.

Dacă , atunci ramurile parabolei sunt îndreptate în jos.

Cunoștințe aprofundate despre curbă pot fi obținute în lecția Hiperbola și parabolă.

O parabolă cubică este dată de funcție. Iată un desen cunoscut de la școală:


Să enumerăm principalele proprietăți ale funcției

Graficul unei funcții

Reprezintă una dintre ramurile unei parabole. Să facem desenul:


Principalele proprietăți ale funcției:

În acest caz, axa este asimptotă verticală pentru graficul unei hiperbole la .

Ar fi o greșeală GRAVE dacă, atunci când întocmești un desen, ai permite neglijent ca graficul să se intersecteze cu o asimptotă.

De asemenea, limitele unilaterale ne spun că hiperbola nelimitat de susȘi nelimitat de jos.

Să examinăm funcția la infinit: , adică dacă începem să ne mișcăm de-a lungul axei la stânga (sau la dreapta) la infinit, atunci „jocurile” vor fi într-un pas ordonat infinit de aproape se apropie de zero și, în consecință, de ramurile hiperbolei infinit de aproape se apropie de ax.

Deci axa este asimptotă orizontală pentru graficul unei funcții, dacă „x” tinde spre plus sau minus infinit.

Funcția este ciudat, și, prin urmare, hiperbola este simetrică față de origine. Acest fapt este evident din desen, în plus, este ușor de verificat analitic: .

Graficul unei funcții de forma () reprezintă două ramuri ale unei hiperbole.

Dacă , atunci hiperbola este situată în primul și al treilea trimestru de coordonate(vezi poza de mai sus).

Dacă , atunci hiperbola este situată în al doilea și al patrulea trimestru de coordonate.

Modelul indicat al rezidenței hiperbolei este ușor de analizat din punctul de vedere al transformărilor geometrice ale graficelor.

Exemplul 3

Construiți ramura dreaptă a hiperbolei

Folosim metoda de construcție punctuală și este avantajos să selectăm valorile astfel încât să fie divizibile cu un întreg:

Să facem desenul:


Nu va fi dificil să construiți ramura stângă a hiperbolei; ciudatenia funcției va ajuta aici. Aproximativ vorbind, în tabelul de construcție punctual, adăugăm mental un minus fiecărui număr, punem punctele corespunzătoare și desenăm a doua ramură.

Informații geometrice detaliate despre linia luată în considerare pot fi găsite în articolul Hiperbolă și parabolă.

Graficul unei funcții exponențiale

În această secțiune, voi lua în considerare imediat funcția exponențială, deoarece în problemele de matematică superioară în 95% din cazuri apare exponențialul.

Permiteți-mi să vă reamintesc că acesta este un număr irațional: , acesta va fi necesar la construirea unui grafic, pe care, de fapt, îl voi construi fără ceremonie. Trei puncte sunt probabil suficiente:

Să lăsăm graficul funcției deocamdată, mai multe despre el mai târziu.

Principalele proprietăți ale funcției:

Graficele de funcții etc., arată fundamental la fel.

Trebuie să spun că al doilea caz apare mai rar în practică, dar apare, așa că am considerat că este necesar să îl includ în acest articol.

Graficul unei funcții logaritmice

Luați în considerare o funcție cu logaritmul natural.
Să facem un desen punct cu punct:

Dacă ați uitat ce este un logaritm, vă rugăm să consultați manualele școlare.

Principalele proprietăți ale funcției:

Domeniu:

Interval de valori: .

Funcția nu este limitată de mai sus: , deși încet, dar ramura logaritmului urcă până la infinit.
Să examinăm comportamentul funcției aproape de zero din dreapta: . Deci axa este asimptotă verticală deoarece graficul unei funcții ca „x” tinde spre zero din dreapta.

Este imperativ să cunoașteți și să vă amintiți valoarea tipică a logaritmului: .

În principiu, graficul logaritmului la bază arată la fel: , , (logaritmul zecimal la baza 10), etc. Mai mult, cu cât baza este mai mare, cu atât graficul va fi mai plat.

Nu vom lua în considerare cazul, nu-mi amintesc când ultima data Am construit un grafic pe această bază. Iar logaritmul pare a fi un invitat foarte rar în problemele de matematică superioară.

La sfârșitul acestui paragraf voi mai spune un fapt: Funcția exponențială și funcţie logaritmică – acestea sunt două funcții reciproc inverse. Dacă te uiți îndeaproape la graficul logaritmului, poți vedea că acesta este același exponent, doar că este situat puțin diferit.

Grafice ale funcțiilor trigonometrice

De unde începe chinul trigonometric la școală? Dreapta. Din sinus

Să diagramăm funcția

Această linie se numește sinusoid.

Permiteți-mi să vă reamintesc că „pi” este un număr irațional: , iar în trigonometrie vă face ochii orbitori.

Principalele proprietăți ale funcției:

Această funcție este periodic cu punct . Ce înseamnă? Să ne uităm la segment. În stânga și în dreapta acestuia, exact aceeași bucată a graficului se repetă la nesfârșit.

Domeniu: , adică pentru orice valoare a lui „x” există o valoare sinus.

Interval de valori: . Funcția este limitat: , adică toate „jocurile” stau strict în segmentul .
Acest lucru nu se întâmplă: sau, mai exact, se întâmplă, dar aceste ecuații nu au o soluție.

Funcția y=x^2 se numește funcție pătratică. Graficul unei funcții pătratice este o parabolă. Forma generală Parabola este prezentată în figura de mai jos.

Funcția pătratică

Fig 1. Vedere generală a parabolei

După cum se poate vedea din grafic, este simetric față de axa Oy. Axa Oy se numește axa de simetrie a parabolei. Aceasta înseamnă că dacă desenați o linie dreaptă pe grafic paralelă cu axa Ox deasupra acestei axe. Apoi va intersecta parabola în două puncte. Distanța de la aceste puncte până la axa Oy va fi aceeași.

Axa de simetrie împarte graficul unei parabole în două părți. Aceste părți sunt numite ramuri ale parabolei. Iar punctul unei parabole care se află pe axa de simetrie se numește vârful parabolei. Adică, axa de simetrie trece prin vârful parabolei. Coordonatele acestui punct sunt (0;0).

Proprietățile de bază ale unei funcții pătratice

1. La x =0, y=0 și y>0 la x0

2. Funcția pătratică atinge valoarea minimă la vârf. Ymin la x=0; De asemenea, trebuie remarcat faptul că funcția nu are o valoare maximă.

3. Funcția scade pe interval (-∞;0] și crește pe interval)