1) Function domain and function range.

    The domain of a function is the set of all valid valid argument values x(variable x), for which the function y = f(x) determined. The range of a function is the set of all real values y, which the function accepts.

    In elementary mathematics, functions are studied only on the set of real numbers.

    2) Function zeros.

    Function zero is the value of the argument at which the value of the function is equal to zero.

    3) Intervals of constant sign of a function.

    Intervals of constant sign of a function are sets of argument values ​​on which the function values ​​are only positive or only negative.

    4) Monotonicity of the function.

    An increasing function (in a certain interval) is a function for which higher value the argument from this interval corresponds to a larger value of the function.

    A decreasing function (in a certain interval) is a function in which a larger value of the argument from this interval corresponds to a smaller value of the function.

    5) Even (odd) function.

    An even function is a function whose domain of definition is symmetrical with respect to the origin and for any X from the domain of definition the equality f(-x) = f(x). The graph of an even function is symmetrical about the ordinate.

    An odd function is a function whose domain of definition is symmetrical with respect to the origin and for any X from the domain of definition the equality is true f(-x) = - f(x). The graph of an odd function is symmetrical about the origin.

    6) Limited and unlimited functions.

    A function is called bounded if there is a positive number M such that |f(x)| ≤ M for all values ​​of x. If such a number does not exist, then the function is unlimited.

    7) Periodicity of the function.

    A function f(x) is periodic if there is a non-zero number T such that for any x from the domain of definition of the function the following holds: f(x+T) = f(x). This smallest number is called the period of the function. All trigonometric functions are periodic. (Trigonometric formulas).

    19. Basic elementary functions, their properties and graphs. Application of functions in economics.

Basic elementary functions. Their properties and graphs

1. Linear function.

Linear function is called a function of the form , where x is a variable, a and b are real numbers.

Number A called the slope of the line, it is equal to the tangent of the angle of inclination of this line to the positive direction of the x-axis. The graph of a linear function is a straight line. It is defined by two points.

Properties of a Linear Function

1. Domain of definition - the set of all real numbers: D(y)=R

2. The set of values ​​is the set of all real numbers: E(y)=R

3. The function takes a zero value when or.

4. The function increases (decreases) over the entire domain of definition.

5. A linear function is continuous over the entire domain of definition, differentiable and .

2. Quadratic function.

A function of the form, where x is a variable, coefficients a, b, c are real numbers, is called quadratic

Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify or contact a specific person.

You may be asked to provide your personal information at any time when you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, telephone number, address Email etc.

How we use your personal information:

  • Collected by us personal information allows us to contact you and inform you about unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes, such as conducting audits, data analysis and various research in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary - in accordance with the law, judicial procedure, legal proceedings, and/or based on public requests or requests from government agencies on the territory of the Russian Federation - disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.

The properties and graphs of power functions are presented for different meanings exponent. Basic formulas, domains of definition and sets of values, parity, monotonicity, increasing and decreasing, extrema, convexity, inflections, points of intersection with coordinate axes, limits, particular values.

Formulas with power functions

On the domain of definition power function y = x p the following formulas apply:
; ;
;
; ;
; ;
; .

Properties of power functions and their graphs

Power function with exponent equal to zero, p = 0

If the exponent of the power function y = x p is equal to zero, p = 0, then the power function is defined for all x ≠ 0 and is a constant equal to one:
y = x p = x 0 = 1, x ≠ 0.

Power function with natural odd exponent, p = n = 1, 3, 5, ...

Consider a power function y = x p = x n with a natural odd exponent n = 1, 3, 5, ... . This indicator can also be written in the form: n = 2k + 1, where k = 0, 1, 2, 3, ... is a non-negative integer. Below are the properties and graphs of such functions.

Graph of a power function y = x n with a natural odd exponent for various values ​​of the exponent n = 1, 3, 5, ....

Domain: -∞ < x < ∞
Multiple meanings: -∞ < y < ∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at -∞< x < 0 выпукла вверх
at 0< x < ∞ выпукла вниз
Inflection points: x = 0, y = 0
x = 0, y = 0
Limits:
;
Private values:
at x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
at x = 0, y(0) = 0 n = 0
for x = 1, y(1) = 1 n = 1
Reverse function:
for n = 1, the function is its inverse: x = y
for n ≠ 1, the inverse function is the root of degree n:

Power function with natural even exponent, p = n = 2, 4, 6, ...

Consider a power function y = x p = x n with a natural even exponent n = 2, 4, 6, ... . This indicator can also be written in the form: n = 2k, where k = 1, 2, 3, ... - natural. The properties and graphs of such functions are given below.

Graph of a power function y = x n with a natural even exponent for various values ​​of the exponent n = 2, 4, 6, ....

Domain: -∞ < x < ∞
Multiple meanings: 0 ≤ y< ∞
Parity: even, y(-x) = y(x)
Monotone:
for x ≤ 0 monotonically decreases
for x ≥ 0 monotonically increases
Extremes: minimum, x = 0, y = 0
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = (-1) n ≡ (-1) 2k = 1
at x = 0, y(0) = 0 n = 0
for x = 1, y(1) = 1 n = 1
Reverse function:
for n = 2, Square root:
for n ≠ 2, root of degree n:

Power function with negative integer exponent, p = n = -1, -2, -3, ...

Consider the power function y = x p = x n with an integer negative indicator degrees n = -1, -2, -3, ... . If we put n = -k, where k = 1, 2, 3, ... is a natural number, then it can be represented as:

Graph of a power function y = x n with a negative integer exponent for various values ​​of the exponent n = -1, -2, -3, ... .

Odd exponent, n = -1, -3, -5, ...

Below are the properties of the function y = x n with an odd negative exponent n = -1, -3, -5, ....

Domain: x ≠ 0
Multiple meanings: y ≠ 0
Parity: odd, y(-x) = - y(x)
Monotone: monotonically decreases
Extremes: No
Convex:
at x< 0 : выпукла вверх
for x > 0: convex downward
Inflection points: No
Intersection points with coordinate axes: No
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
; ; ;
Private values:
for x = 1, y(1) = 1 n = 1
Reverse function:
when n = -1,
at n< -2 ,

Even exponent, n = -2, -4, -6, ...

Below are the properties of the function y = x n with an even negative exponent n = -2, -4, -6, ....

Domain: x ≠ 0
Multiple meanings: y > 0
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно возрастает
for x > 0: monotonically decreases
Extremes: No
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Sign: y > 0
Limits:
; ; ;
Private values:
for x = 1, y(1) = 1 n = 1
Reverse function:
at n = -2,
at n< -2 ,

Power function with rational (fractional) exponent

Consider a power function y = x p with a rational (fractional) exponent, where n is an integer, m > 1 is a natural number. Moreover, n, m do not have common divisors.

The denominator of the fractional indicator is odd

Let the denominator of the fractional exponent be odd: m = 3, 5, 7, ... . In this case, the power function x p is defined for both positive and negative values ​​of the argument x. Let us consider the properties of such power functions when the exponent p is within certain limits.

The p-value is negative, p< 0

Let the rational exponent (with odd denominator m = 3, 5, 7, ...) less than zero: .

Graphs of power functions with a rational negative exponent for various values ​​of the exponent, where m = 3, 5, 7, ... is odd.

Odd numerator, n = -1, -3, -5, ...

We present the properties of the power function y = x p with a rational negative exponent, where n = -1, -3, -5, ... is an odd negative integer, m = 3, 5, 7 ... is an odd natural integer.

Domain: x ≠ 0
Multiple meanings: y ≠ 0
Parity: odd, y(-x) = - y(x)
Monotone: monotonically decreases
Extremes: No
Convex:
at x< 0 : выпукла вверх
for x > 0: convex downward
Inflection points: No
Intersection points with coordinate axes: No
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
; ; ;
Private values:
at x = -1, y(-1) = (-1) n = -1
for x = 1, y(1) = 1 n = 1
Reverse function:

Even numerator, n = -2, -4, -6, ...

Properties of the power function y = x p with a rational negative exponent, where n = -2, -4, -6, ... is an even negative integer, m = 3, 5, 7 ... is an odd natural integer.

Domain: x ≠ 0
Multiple meanings: y > 0
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно возрастает
for x > 0: monotonically decreases
Extremes: No
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Sign: y > 0
Limits:
; ; ;
Private values:
at x = -1, y(-1) = (-1) n = 1
for x = 1, y(1) = 1 n = 1
Reverse function:

The p-value is positive, less than one, 0< p < 1

Graph of a power function with rational exponent (0< p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Odd numerator, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domain: -∞ < x < +∞
Multiple meanings: -∞ < y < +∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at x< 0 : выпукла вниз
for x > 0: convex upward
Inflection points: x = 0, y = 0
Intersection points with coordinate axes: x = 0, y = 0
Sign:
at x< 0, y < 0
for x > 0, y > 0
Limits:
;
Private values:
at x = -1, y(-1) = -1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

Even numerator, n = 2, 4, 6, ...

The properties of the power function y = x p with a rational exponent within 0 are presented< p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Domain: -∞ < x < +∞
Multiple meanings: 0 ≤ y< +∞
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 : монотонно убывает
for x > 0: increases monotonically
Extremes: minimum at x = 0, y = 0
Convex: convex upward for x ≠ 0
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Sign: for x ≠ 0, y > 0
Limits:
;
Private values:
at x = -1, y(-1) = 1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

The p index is greater than one, p > 1

Graph of a power function with a rational exponent (p > 1) for various values ​​of the exponent, where m = 3, 5, 7, ... - odd.

Odd numerator, n = 5, 7, 9, ...

Properties of the power function y = x p with a rational exponent greater than one: . Where n = 5, 7, 9, ... - odd natural, m = 3, 5, 7 ... - odd natural.

Domain: -∞ < x < ∞
Multiple meanings: -∞ < y < ∞
Parity: odd, y(-x) = - y(x)
Monotone: monotonically increases
Extremes: No
Convex:
at -∞< x < 0 выпукла вверх
at 0< x < ∞ выпукла вниз
Inflection points: x = 0, y = 0
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = -1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

Even numerator, n = 4, 6, 8, ...

Properties of the power function y = x p with a rational exponent greater than one: . Where n = 4, 6, 8, ... - even natural, m = 3, 5, 7 ... - odd natural.

Domain: -∞ < x < ∞
Multiple meanings: 0 ≤ y< ∞
Parity: even, y(-x) = y(x)
Monotone:
at x< 0 монотонно убывает
for x > 0 monotonically increases
Extremes: minimum at x = 0, y = 0
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
;
Private values:
at x = -1, y(-1) = 1
at x = 0, y(0) = 0
for x = 1, y(1) = 1
Reverse function:

The denominator of the fractional indicator is even

Let the denominator of the fractional exponent be even: m = 2, 4, 6, ... . In this case, the power function x p is not defined for negative values ​​of the argument. Its properties coincide with the properties of a power function with an irrational exponent (see the next section).

Power function with irrational exponent

Consider a power function y = x p with an irrational exponent p. The properties of such functions differ from those discussed above in that they are not defined for negative values ​​of the argument x. For positive values argument, the properties depend only on the value of the exponent p and do not depend on whether p is integer, rational or irrational.

y = x p for different values ​​of the exponent p.

Power function with negative exponent p< 0

Domain: x > 0
Multiple meanings: y > 0
Monotone: monotonically decreases
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: No
Limits: ;
Private meaning: For x = 1, y(1) = 1 p = 1

Power function with positive exponent p > 0

Indicator less than one 0< p < 1

Domain: x ≥ 0
Multiple meanings: y ≥ 0
Monotone: monotonically increases
Convex: convex upward
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
Private values: For x = 0, y(0) = 0 p = 0 .
For x = 1, y(1) = 1 p = 1

The indicator is greater than one p > 1

Domain: x ≥ 0
Multiple meanings: y ≥ 0
Monotone: monotonically increases
Convex: convex down
Inflection points: No
Intersection points with coordinate axes: x = 0, y = 0
Limits:
Private values: For x = 0, y(0) = 0 p = 0 .
For x = 1, y(1) = 1 p = 1

References:
I.N. Bronstein, K.A. Semendyaev, Handbook of mathematics for engineers and college students, “Lan”, 2009.

Provides reference data on the exponential function - basic properties, graphs and formulas. The following issues are considered: domain of definition, set of values, monotonicity, inverse function, derivative, integral, expansion in power series and representation using complex numbers.

Definition

Exponential function is a generalization of the product of n numbers equal to a:
y (n) = a n = a·a·a···a,
to the set of real numbers x:
y (x) = a x.
Here a is a fixed real number, which is called basis of the exponential function.
An exponential function with base a is also called exponent to base a.

The generalization is carried out as follows.
For natural x = 1, 2, 3,... , exponential function is the product of x factors:
.
Moreover, it has properties (1.5-8) (), which follow from the rules for multiplying numbers. For zero and negative values ​​of integers, the exponential function is determined using formulas (1.9-10). For fractional values ​​x = m/n rational numbers, , it is determined by formula (1.11). For reals, the exponential function is defined as sequence limit:
,
where is an arbitrary sequence of rational numbers converging to x: .
With this definition, the exponential function is defined for all , and satisfies properties (1.5-8), as for natural x.

A rigorous mathematical formulation of the definition of an exponential function and the proof of its properties is given on the page “Definition and proof of the properties of an exponential function”.

Properties of the Exponential Function

The exponential function y = a x has the following properties on the set of real numbers ():
(1.1) defined and continuous, for , for all ;
(1.2) for a ≠ 1 has many meanings;
(1.3) strictly increases at , strictly decreases at ,
is constant at ;
(1.4) at ;
at ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Other useful formulas.
.
Formula for converting to an exponential function with a different exponent base:

When b = e, we obtain the expression of the exponential function through the exponential:

Private values

, , , , .

The figure shows graphs of the exponential function
y (x) = a x
for four values degree bases: a = 2 , a = 8 , a = 1/2 and a = 1/8 . It can be seen that for a > 1 the exponential function increases monotonically. The larger the base of the degree a, the stronger the growth. At 0 < a < 1 the exponential function decreases monotonically. The smaller the exponent a, the stronger the decrease.

Ascending, descending

The exponential function for is strictly monotonic and therefore has no extrema. Its main properties are presented in the table.

y = a x , a > 1 y = ax, 0 < a < 1
Domain - ∞ < x < + ∞ - ∞ < x < + ∞
Range of values 0 < y < + ∞ 0 < y < + ∞
Monotone monotonically increases monotonically decreases
Zeros, y = 0 No No
Intercept points with the ordinate axis, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Inverse function

The inverse of an exponential function with base a is the logarithm to base a.

If , then
.
If , then
.

Differentiation of an exponential function

To differentiate an exponential function, its base must be reduced to the number e, apply the table of derivatives and the differentiation rule complex function.

To do this you need to use the property of logarithms
and the formula from the derivatives table:
.

Let an exponential function be given:
.
We bring it to the base e:

Let's apply the rule of differentiation of complex functions. To do this, introduce the variable

Then

From the table of derivatives we have (replace the variable x with z):
.
Since is a constant, the derivative of z with respect to x is equal to
.
According to the rule of differentiation of a complex function:
.

Derivative of an exponential function

.
Derivative of nth order:
.
Deriving formulas > > >

An example of differentiating an exponential function

Find the derivative of a function
y = 3 5 x

Solution

Let's express the base of the exponential function through the number e.
3 = e ln 3
Then
.
Enter a variable
.
Then

From the table of derivatives we find:
.
Because the 5ln 3 is a constant, then the derivative of z with respect to x is equal to:
.
According to the rule of differentiation of a complex function, we have:
.

Answer

Integral

Expressions using complex numbers

Consider the function complex number z:
f (z) = a z
where z = x + iy; i 2 = - 1 .
Let us express the complex constant a in terms of modulus r and argument φ:
a = r e i φ
Then


.
The argument φ is not uniquely defined. IN general view
φ = φ 0 + 2 πn,
where n is an integer. Therefore the function f (z) is also not clear. Its main significance is often considered
.

Series expansion


.

References:
I.N. Bronstein, K.A. Semendyaev, Handbook of mathematics for engineers and college students, “Lan”, 2009.

The section contains reference material on the main elementary functions and their properties. A classification of elementary functions is given. Below are links to subsections that discuss the properties of specific functions - graphs, formulas, derivatives, antiderivatives (integrals), series expansions, expressions through complex variables.

Reference pages for basic functions

Classification of elementary functions

Algebraic function is a function that satisfies the equation:
,
where is a polynomial in the dependent variable y and the independent variable x. It can be written as:
,
where are polynomials.

Algebraic functions are divided into polynomials (entire rational functions), rational functions and irrational functions.

Entire rational function, which is also called polynomial or polynomial, is obtained from the variable x and a finite number of numbers using the arithmetic operations of addition (subtraction) and multiplication. After opening the brackets, the polynomial is reduced to canonical form:
.

Fractional rational function, or simply rational function, is obtained from the variable x and a finite number of numbers using the arithmetic operations of addition (subtraction), multiplication and division. The rational function can be reduced to the form
,
where and are polynomials.

Irrational function is an algebraic function that is not rational. As a rule, an irrational function is understood as roots and their compositions with rational functions. A root of degree n is defined as the solution to the equation
.
It is designated as follows:
.

Transcendental functions are called non-algebraic functions. These are exponential, trigonometric, hyperbolic and their inverse functions.

Overview of basic elementary functions

All elementary functions can be represented as a finite number of addition, subtraction, multiplication and division operations performed on an expression of the form:
z t .
Inverse functions can also be expressed in terms of logarithms. The basic elementary functions are listed below.

Power function :
y(x) = x p ,
where p is the exponent. It depends on the base of the degree x.
The inverse of the power function is also the power function:
.
For an integer non-negative value of the exponent p, it is a polynomial. For an integer value p - a rational function. With a rational meaning - an irrational function.

Transcendental functions

Exponential function :
y(x) = a x ,
where a is the base of the degree. It depends on the exponent x.
The inverse function is the logarithm to base a:
x = log a y.

Exponent, e to the x power:
y(x) = e x ,
This is an exponential function whose derivative is equal to the function itself:
.
The base of the exponent is the number e:
≈ 2,718281828459045... .
The inverse function is the natural logarithm - the logarithm to the base of the number e:
x = ln y ≡ log e y.

Trigonometric functions:
Sine: ;
Cosine: ;
Tangent: ;
Cotangent: ;
Here i is the imaginary unit, i 2 = -1.

Inverse trigonometric functions:
Arcsine: x = arcsin y, ;
Arc cosine: x = arccos y, ;
Arctangent: x = arctan y, ;
Arc tangent: x = arcctg y, .