Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνσή σας ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗκαι τα λοιπά.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Συλλέγεται από εμάς προσωπικές πληροφορίεςμας επιτρέπει να επικοινωνήσουμε μαζί σας και να σας ενημερώσουμε για μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο - σύμφωνα με το νόμο, τη δικαστική διαδικασία, τις νομικές διαδικασίες ή/και με βάση δημόσια αιτήματα ή αιτήματα από κυβερνητικές υπηρεσίεςστο έδαφος της Ρωσικής Ομοσπονδίας - αποκαλύψτε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον αντίστοιχο τρίτο διάδοχο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Δίνονται οι βασικές ιδιότητες του λογάριθμου, γράφημα λογάριθμου, πεδίο ορισμού, σύνολο τιμών, βασικοί τύποι, αύξηση και μείωση. Εξετάζεται η εύρεση της παραγώγου ενός λογάριθμου. Και επίσης το αναπόσπαστο, επέκταση σε σειρά ισχύοςκαι αναπαράσταση με χρήση μιγαδικών αριθμών.

Ορισμός λογάριθμου

Λογάριθμος με βάση αείναι συνάρτηση του y (x) = log a x, αντίστροφη της εκθετικής συνάρτησης με βάση α: x (y) = a y.

Δεκαδικός λογάριθμοςείναι ο λογάριθμος στη βάση ενός αριθμού 10 : log x ≡ log 10 x.

Φυσικός λογάριθμοςείναι ο λογάριθμος στη βάση του e: ln x ≡ log e x.

2,718281828459045... ;
.

Η γραφική παράσταση του λογάριθμου προκύπτει από τη γραφική παράσταση της εκθετικής συνάρτησης κατοπτρίζοντας την ως προς την ευθεία y = x. Αριστερά υπάρχουν γραφήματα της συνάρτησης y (x) = log a xγια τέσσερις τιμές βάσεις λογαρίθμων: α = 2 , α = 8 , α = 1/2 και α = 1/8 . Το γράφημα δείχνει ότι όταν ένα > 1 ο λογάριθμος αυξάνεται μονότονα. Καθώς το x αυξάνεται, η ανάπτυξη επιβραδύνεται σημαντικά. Στο 0 < a < 1 ο λογάριθμος μειώνεται μονότονα.

Ιδιότητες του λογάριθμου

Τομέας, σύνολο τιμών, αύξηση, μείωση

Ο λογάριθμος είναι μονότονη συνάρτηση, άρα δεν έχει ακρότατα. Οι κύριες ιδιότητες του λογαρίθμου παρουσιάζονται στον πίνακα.

Τομέα 0 < x < + ∞ 0 < x < + ∞
Εύρος τιμών - ∞ < y < + ∞ - ∞ < y < + ∞
Μονότονη ομιλία αυξάνεται μονοτονικά μειώνεται μονοτονικά
Μηδενικά, y = 0 x = 1 x = 1
Σημεία τομής με τον άξονα τεταγμένων, x = 0 Οχι Οχι
+ ∞ - ∞
- ∞ + ∞

Ιδιωτικές αξίες


Ο λογάριθμος στη βάση 10 ονομάζεται δεκαδικός λογάριθμοςκαι συμβολίζεται ως εξής:

Λογάριθμος προς βάση μιπου ονομάζεται φυσικός λογάριθμος :

Βασικοί τύποι για λογάριθμους

Ιδιότητες του λογάριθμου που προκύπτουν από τον ορισμό της αντίστροφης συνάρτησης:

Η κύρια ιδιότητα των λογαρίθμων και οι συνέπειές της

Φόρμουλα αντικατάστασης βάσης

Λογάριθμος- Αυτό μαθηματική πράξηπαίρνοντας τον λογάριθμο. Κατά τη λήψη λογαρίθμων, τα γινόμενα των παραγόντων μετατρέπονται σε αθροίσματα όρων.

Ενίσχυσηείναι η αντίστροφη μαθηματική πράξη του λογάριθμου. Κατά τη διάρκεια της ενίσχυσης, μια δεδομένη βάση αυξάνεται στον βαθμό έκφρασης στον οποίο πραγματοποιείται η ενίσχυση. Στην περίπτωση αυτή, τα αθροίσματα των όρων μετατρέπονται σε γινόμενα παραγόντων.

Απόδειξη βασικών τύπων για λογάριθμους

Οι τύποι που σχετίζονται με τους λογάριθμους προκύπτουν από τύπους για εκθετικές συναρτήσεις και από τον ορισμό μιας αντίστροφης συνάρτησης.

Θεωρήστε την ιδιότητα της εκθετικής συνάρτησης
.
Επειτα
.
Ας εφαρμόσουμε την ιδιότητα της εκθετικής συνάρτησης
:
.

Ας αποδείξουμε τον τύπο αντικατάστασης βάσης.
;
.
Υποθέτοντας c = b, έχουμε:

Αντίστροφη συνάρτηση

Το αντίστροφο του λογάριθμου στη βάση του a είναι εκθετικη συναρτησημε εκθέτη α.

Αν τότε

Αν τότε

Παράγωγο λογάριθμου

Παράγωγος του λογάριθμου του συντελεστή x:
.
Παράγωγο νης τάξης:
.
Εξαγωγή τύπων > > >

Για να βρεθεί η παράγωγος ενός λογάριθμου, πρέπει να αναχθεί στη βάση μι.
;
.

Αναπόσπαστο

Το ολοκλήρωμα του λογάριθμου υπολογίζεται ολοκληρώνοντας κατά μέρη: .
Ετσι,

Εκφράσεις με χρήση μιγαδικών αριθμών

Θεωρήστε τη συνάρτηση μιγαδικού αριθμού z:
.
Ας εκφραστούμε μιγαδικός αριθμός zμέσω ενότητας rκαι επιχείρημα φ :
.
Στη συνέχεια, χρησιμοποιώντας τις ιδιότητες του λογάριθμου, έχουμε:
.
Ή

Ωστόσο, το επιχείρημα φ δεν ορίζεται μοναδικά. Αν βάλεις
, όπου n είναι ακέραιος,
τότε θα είναι ο ίδιος αριθμός για διαφορετικά n.

Επομένως, ο λογάριθμος, ως συνάρτηση μιγαδικής μεταβλητής, δεν είναι συνάρτηση μίας τιμής.

Επέκταση σειράς ισχύος

Όταν πραγματοποιείται η επέκταση:

Βιβλιογραφικές αναφορές:
ΣΕ. Bronstein, Κ.Α. Semendyaev, Εγχειρίδιο μαθηματικών για μηχανικούς και φοιτητές, "Lan", 2009.

Τι είναι ο λογάριθμος;

Προσοχή!
Υπάρχουν επιπλέον
υλικά στο Ειδικό Τμήμα 555.
Για όσους είναι πολύ "όχι πολύ..."
Και για όσους «πολύ…»)

Τι είναι ο λογάριθμος; Πώς να λύσετε λογάριθμους; Αυτά τα ερωτήματα μπερδεύουν πολλούς απόφοιτους. Παραδοσιακά, το θέμα των λογαρίθμων θεωρείται περίπλοκο, ακατανόητο και τρομακτικό. Ειδικά εξισώσεις με λογάριθμους.

Αυτό δεν είναι απολύτως αλήθεια. Απολύτως! Δεν με πιστεύεις; Πρόστιμο. Τώρα, σε μόλις 10-20 λεπτά:

1. Θα καταλάβεις τι είναι λογάριθμος.

2. Μάθετε να λύνετε μια ολόκληρη τάξη εκθετικές εξισώσεις. Ακόμα κι αν δεν έχετε ακούσει τίποτα για αυτούς.

3. Μάθετε να υπολογίζετε απλούς λογάριθμους.

Επιπλέον, για αυτό θα χρειαστεί μόνο να γνωρίζετε τον πίνακα πολλαπλασιασμού και πώς να αυξήσετε έναν αριθμό σε δύναμη...

Νιώθω ότι έχετε αμφιβολίες... Λοιπόν, εντάξει, σημειώστε την ώρα! Πηγαίνω!

Πρώτα, λύστε αυτή την εξίσωση στο κεφάλι σας:

Αν σας αρέσει αυτό το site...

Παρεμπιπτόντως, έχω μερικές ακόμη ενδιαφέρουσες τοποθεσίες για εσάς.)

Μπορείτε να εξασκηθείτε στην επίλυση παραδειγμάτων και να μάθετε το επίπεδό σας. Δοκιμή με άμεση επαλήθευση. Ας μάθουμε - με ενδιαφέρον!)

Μπορείτε να εξοικειωθείτε με συναρτήσεις και παραγώγους.

κύριες ιδιότητες.

  1. logax + logay = loga(x y);
  2. logax − logay = λογάριθμος (x: y).

πανομοιότυπους λόγους

Log6 4 + log6 9.

Τώρα ας περιπλέκουμε λίγο το έργο.

Παραδείγματα επίλυσης λογαρίθμων

Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x >

Εργο. Βρείτε το νόημα της έκφρασης:

Μετάβαση σε νέα βάση

Ας δοθεί ο λογάριθμος λογάριθμος. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Εργο. Βρείτε το νόημα της έκφρασης:

Δείτε επίσης:


Βασικές ιδιότητες του λογάριθμου

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ο εκθέτης είναι 2,718281828…. Για να θυμάστε τον εκθέτη, μπορείτε να μελετήσετε τον κανόνα: ο εκθέτης είναι ίσος με 2,7 και διπλάσιο από το έτος γέννησης του Λέοντος Νικολάεβιτς Τολστόι.

Βασικές ιδιότητες των λογαρίθμων

Γνωρίζοντας αυτόν τον κανόνα, θα γνωρίζετε και ακριβής αξίαεκθέτες και την ημερομηνία γέννησης του Λέοντος Τολστόι.


Παραδείγματα λογαρίθμων

Λογαρίθμες εκφράσεις

Παράδειγμα 1.
ΕΝΑ). x=10ac^2 (a>0,c>0).

Χρησιμοποιώντας ιδιότητες 3.5 υπολογίζουμε

2.

3.

4. Οπου .



Παράδειγμα 2. Βρείτε το x αν


Παράδειγμα 3. Έστω η τιμή των λογαρίθμων

Υπολογίστε το log(x) αν




Βασικές ιδιότητες των λογαρίθμων

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Αλλά επειδή οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: λογάξ και λογάριθμο. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. logax + logay = loga(x y);
  2. logax − logay = λογάριθμος (x: y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Σημείωση: κομβική στιγμήΕδώ - πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε μια λογαριθμική παράσταση ακόμα και όταν δεν λαμβάνονται υπόψη τα επιμέρους μέρη της (δείτε το μάθημα «Τι είναι ο λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Επειδή οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log2 48 − log2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log3 135 − log3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλά τεστ βασίζονται σε αυτό το γεγονός. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x > 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα , δηλ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο. Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log7 496.

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log7 496 = 6 log7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 24; 49 = 72. Έχουμε:

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι την τελευταία στιγμή δουλεύουμε μόνο με τον παρονομαστή.

Τύποι λογαρίθμων. Παραδείγματα λογαρίθμων λύσεων.

Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log2 7. Επειδή log2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Ας δοθεί ο λογάριθμος λογάριθμος. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Συγκεκριμένα, αν θέσουμε c = x, παίρνουμε:

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι βρίσκονται σπάνια σε συνηθισμένες αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογήσετε πόσο βολικές είναι μόνο αποφασίζοντας λογαριθμικές εξισώσειςκαι ανισότητες.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log5 16 log2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση. Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός n γίνεται ο εκθέτης στο όρισμα. Ο αριθμός n μπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Έτσι λέγεται: .

Στην πραγματικότητα, τι συμβαίνει αν ο αριθμός b αυξηθεί σε τέτοια δύναμη που ο αριθμός b σε αυτή τη δύναμη να δώσει τον αριθμό a; Αυτό είναι σωστό: το αποτέλεσμα είναι ο ίδιος αριθμός α. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι log25 64 = log5 8 - απλά πήρε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

Αν κάποιος δεν ξέρει, αυτή ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. λογάα = 1 είναι. Θυμηθείτε μια για πάντα: ο λογάριθμος σε οποιαδήποτε βάση α αυτής της ίδιας της βάσης είναι ίσος με ένα.
  2. λογότυπο 1 = 0 είναι. Η βάση a μπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή a0 = 1 είναι άμεση συνέπειααπό τον ορισμό.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.

Δείτε επίσης:

Ο λογάριθμος του b για τη βάση του a δηλώνει την παράσταση. Για να υπολογίσετε τον λογάριθμο σημαίνει να βρείτε μια ισχύ x () στην οποία η ισότητα ικανοποιείται

Βασικές ιδιότητες του λογάριθμου

Είναι απαραίτητο να γνωρίζουμε τις παραπάνω ιδιότητες, αφού όλα σχεδόν τα προβλήματα και τα παραδείγματα που σχετίζονται με τους λογάριθμους επιλύονται με βάση τους. Υπόλοιπο εξωτικές ιδιότητεςμπορεί να προκύψει με μαθηματικό χειρισμό αυτών των τύπων

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Κατά τον υπολογισμό του τύπου για το άθροισμα και τη διαφορά των λογαρίθμων (3.4) συναντάτε αρκετά συχνά. Τα υπόλοιπα είναι κάπως περίπλοκα, αλλά σε μια σειρά εργασιών είναι απαραίτητα για την απλοποίηση σύνθετων εκφράσεων και τον υπολογισμό των τιμών τους.

Συνήθεις περιπτώσεις λογαρίθμων

Μερικοί από τους κοινούς λογάριθμους είναι εκείνοι στους οποίους η βάση είναι ακόμη δέκα, εκθετική ή δύο.
Ο λογάριθμος στη βάση δέκα ονομάζεται συνήθως δεκαδικός λογάριθμος και συμβολίζεται απλώς με lg(x).

Είναι σαφές από την ηχογράφηση ότι τα βασικά δεν γράφονται στην ηχογράφηση. Για παράδειγμα

Ένας φυσικός λογάριθμος είναι ένας λογάριθμος του οποίου η βάση είναι ένας εκθέτης (που συμβολίζεται με ln(x)).

Ο εκθέτης είναι 2,718281828…. Για να θυμάστε τον εκθέτη, μπορείτε να μελετήσετε τον κανόνα: ο εκθέτης είναι ίσος με 2,7 και διπλάσιο από το έτος γέννησης του Λέοντος Νικολάεβιτς Τολστόι. Γνωρίζοντας αυτόν τον κανόνα, θα γνωρίζετε τόσο την ακριβή τιμή του εκθέτη όσο και την ημερομηνία γέννησης του Λέοντα Τολστόι.

Και ένας άλλος σημαντικός λογάριθμος για τη βάση δύο συμβολίζεται με

Η παράγωγος του λογάριθμου μιας συνάρτησης είναι ίση με ένα διαιρούμενο με τη μεταβλητή

Ο ολοκληρωτικός ή αντιπαράγωγος λογάριθμος καθορίζεται από τη σχέση

Το δεδομένο υλικό είναι αρκετό για να λύσετε μια ευρεία κατηγορία προβλημάτων που σχετίζονται με λογάριθμους και λογάριθμους. Για να σας βοηθήσω να κατανοήσετε το υλικό, θα δώσω μόνο μερικά κοινά παραδείγματα από σχολικό πρόγραμμα σπουδώνκαι πανεπιστήμια.

Παραδείγματα λογαρίθμων

Λογαρίθμες εκφράσεις

Παράδειγμα 1.
ΕΝΑ). x=10ac^2 (a>0,c>0).

Χρησιμοποιώντας ιδιότητες 3.5 υπολογίζουμε

2.
Με την ιδιότητα διαφοράς λογαρίθμων έχουμε

3.
Χρησιμοποιώντας ιδιότητες 3.5 βρίσκουμε

4. Οπου .

Μια φαινομενικά πολύπλοκη έκφραση απλοποιείται για να σχηματιστεί χρησιμοποιώντας έναν αριθμό κανόνων

Εύρεση λογαριθμικών τιμών

Παράδειγμα 2. Βρείτε το x αν

Λύση. Για τον υπολογισμό, εφαρμόζουμε στον τελευταίο όρο 5 και 13 ιδιότητες

Το βάζουμε σε δίσκο και θρηνούμε

Εφόσον οι βάσεις είναι ίσες, εξισώνουμε τις εκφράσεις

Λογάριθμοι. Πρώτο επίπεδο.

Ας δοθεί η τιμή των λογαρίθμων

Υπολογίστε το log(x) αν

Λύση: Ας πάρουμε έναν λογάριθμο της μεταβλητής για να γράψουμε τον λογάριθμο μέσω του αθροίσματος των όρων της


Αυτή είναι μόνο η αρχή της γνωριμίας μας με τους λογάριθμους και τις ιδιότητές τους. Εξασκηθείτε στους υπολογισμούς, εμπλουτίστε τις πρακτικές σας δεξιότητες - σύντομα θα χρειαστείτε τις γνώσεις που αποκτάτε για να λύσετε λογαριθμικές εξισώσεις. Έχοντας μελετήσει τις βασικές μεθόδους για την επίλυση τέτοιων εξισώσεων, θα επεκτείνουμε τις γνώσεις σας για άλλη μια όχι λιγότερο σημαντικό θέμα- λογαριθμικές ανισώσεις...

Βασικές ιδιότητες των λογαρίθμων

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Αλλά επειδή οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: λογάξ και λογάριθμο. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. logax + logay = loga(x y);
  2. logax − logay = λογάριθμος (x: y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Παρακαλώ σημειώστε: το βασικό σημείο εδώ είναι πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε μια λογαριθμική παράσταση ακόμα και όταν δεν λαμβάνονται υπόψη τα επιμέρους μέρη της (δείτε το μάθημα «Τι είναι ο λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Εργο. Βρείτε την τιμή της παράστασης: log6 4 + log6 9.

Επειδή οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log2 48 − log2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log3 135 − log3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλά τεστ βασίζονται σε αυτό το γεγονός. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Τώρα ας περιπλέκουμε λίγο το έργο. Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x > 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα , δηλ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο.

Πώς να λύσετε λογάριθμους

Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log7 496.

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log7 496 = 6 log7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 24; 49 = 72. Έχουμε:

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι την τελευταία στιγμή δουλεύουμε μόνο με τον παρονομαστή. Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log2 7. Επειδή log2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Ας δοθεί ο λογάριθμος λογάριθμος. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Συγκεκριμένα, αν θέσουμε c = x, παίρνουμε:

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι βρίσκονται σπάνια σε συνηθισμένες αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογηθεί πόσο βολικές είναι μόνο όταν επιλύονται λογαριθμικές εξισώσεις και ανισώσεις.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log5 16 log2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση. Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός n γίνεται ο εκθέτης στο όρισμα. Ο αριθμός n μπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Έτσι λέγεται: .

Στην πραγματικότητα, τι συμβαίνει αν ο αριθμός b αυξηθεί σε τέτοια δύναμη που ο αριθμός b σε αυτή τη δύναμη να δώσει τον αριθμό a; Αυτό είναι σωστό: το αποτέλεσμα είναι ο ίδιος αριθμός α. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι log25 64 = log5 8 - απλά πήρε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

Αν κάποιος δεν ξέρει, αυτή ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. λογάα = 1 είναι. Θυμηθείτε μια για πάντα: ο λογάριθμος σε οποιαδήποτε βάση α αυτής της ίδιας της βάσης είναι ίσος με ένα.
  2. λογότυπο 1 = 0 είναι. Η βάση a μπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή το a0 = 1 είναι άμεση συνέπεια του ορισμού.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Αλλά επειδή οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: log ένα Χκαι ημερολόγιο ένα y. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. κούτσουρο ένα Χ+ ημερολόγιο ένα y= κούτσουρο ένα (Χ · y);
  2. κούτσουρο ένα Χ− ημερολόγιο ένα y= κούτσουρο ένα (Χ : y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Παρακαλώ σημειώστε: το βασικό σημείο εδώ είναι πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε μια λογαριθμική παράσταση ακόμα και όταν δεν λαμβάνονται υπόψη τα μεμονωμένα μέρη της (βλ. μάθημα «Τι είναι λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Μητρώο 6 4 + ημερολόγιο 6 9.

Επειδή οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log 2 48 − log 2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log 3 135 − log 3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλά τεστ βασίζονται σε αυτό το γεγονός. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Τώρα ας περιπλέκουμε λίγο το έργο. Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα εάν τηρηθεί το ODZ του λογαρίθμου: ένα > 0, ένα ≠ 1, Χ> 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα, π.χ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο. Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log 7 49 6 .

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

[Λεζάντα για την εικόνα]

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 2 4 ; 49 = 7 2. Εχουμε:

[Λεζάντα για την εικόνα]

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι την τελευταία στιγμή δουλεύουμε μόνο με τον παρονομαστή. Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log 2 7. Εφόσον το log 2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Αφήστε το αρχείο καταγραφής λογαρίθμου να δοθεί ένα Χ. Στη συνέχεια για οποιοδήποτε αριθμό ντοτέτοια που ντο> 0 και ντο≠ 1, η ισότητα είναι αληθής:

[Λεζάντα για την εικόνα]

Συγκεκριμένα, αν βάλουμε ντο = Χ, παίρνουμε:

[Λεζάντα για την εικόνα]

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι βρίσκονται σπάνια σε συνηθισμένες αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογηθεί πόσο βολικές είναι μόνο όταν επιλύονται λογαριθμικές εξισώσεις και ανισώσεις.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log 5 16 log 2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

[Λεζάντα για την εικόνα]

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log 9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

[Λεζάντα για την εικόνα]

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

[Λεζάντα για την εικόνα]

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση. Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός nγίνεται δείκτης του βαθμού που βρίσκεται στο επιχείρημα. Αριθμός nμπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Αυτό ονομάζεται: η βασική λογαριθμική ταυτότητα.

Στην πραγματικότητα, τι θα συμβεί εάν ο αριθμός σιαυξήσει σε τέτοια δύναμη ώστε ο αριθμός σισε αυτή τη δύναμη δίνει τον αριθμό ένα? Αυτό είναι σωστό: παίρνετε τον ίδιο αριθμό ένα. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

[Λεζάντα για την εικόνα]

Σημειώστε ότι το log 25 64 = log 5 8 - απλά πήρε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

[Λεζάντα για την εικόνα]

Αν κάποιος δεν ξέρει, αυτό ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. κούτσουρο ένα ένα= 1 είναι μια λογαριθμική μονάδα. Θυμηθείτε μια για πάντα: λογάριθμος σε οποιαδήποτε βάση ένααπό αυτήν ακριβώς τη βάση ισούται με ένα.
  2. κούτσουρο ένα 1 = 0 είναι λογαριθμικό μηδέν. Βάση έναμπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή έναΤο 0 = 1 είναι άμεση συνέπεια του ορισμού.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.