Морские мины в зависимости от их носителей делятся на корабельные (сбрасываются с палубы кораблей), лодочные (выстреливаются из торпедных аппаратов подводной лодки) и авиационные (сбрасываются с самолета). По положению после постановки мины делятся на якорные, донные и плавающие (с помощью приборов удерживаются на заданном расстоянии от поверхности воды); по типу взрывателей - на контактные (взрываются при соприкосновении с кораблем), неконтактные (взрываются при прохождении корабля на определенном расстоянии от мины) и инженерные (подрываются с берегового командного пункта). Контактные мины бывают гальваноударные, ударно-механические и антенные. Взрыватель контактных мин имеет гальванический элемент, ток которого (во время соприкосновения корабля с миной) замыкает при помощи реле внутри мины электрическую цепь запала, что вызывает взрыв заряда мины. Неконтактные якорные и донные мины снабжаются высокочувствительными взрывателями, реагирующими на физические поля корабля при прохождении им вблизи мин (изменяющееся магнитное поле, звуковые колебания и др.). В зависимости от природы поля, на которое реагируют неконтактные мины, различают магнитные, индукционные, акустические, гидродинамические или комбинированные мины. Схема неконтактного взрывателя включает элемент, воспринимающий изменения внешнего поля, связанные с прохождением корабля, усилительный тракт и исполнительное устройство (цепь запала). Инженерные мины делятся на управляемые по проводам и по радио. Для затруднения борьбы с неконтактными минами (траления мин) в схему взрывателей включаются приборы срочности, задерживающие приведение мины в боевое положение на любой требуемый период, приборы кратности, обеспечивающие взрыв мины только после заданного числа воздействий на взрыватель, и приборы-ловушки, вызывающие взрыв мины при попытке ее разоружения.

Первую, правда неудачную, попытку применения плавучей мины предприняли русские инженеры в русско-турецкой войне 1768-1774. В 1807 в России военным инженером И. И. Фитцумом была сконструирована морская мина, подрываемая с берега по огнепроводному шлангу. В 1812 русский ученый П. Л. Шиллинг осуществил проект мины, взрываемой с берега с помощью электрического тока. В 1840-50-х академик Б. С. Якоби изобрел гальваноударную мину, которая устанавливалась под поверхностью воды на тросе с якорем. Эти мины впервые были применены во время Крымской войны 1853-56. После войны русские изобретатели А. П. Давыдов и др. создали ударные мины с механическим взрывателем. Адмирал С. О. Макаров, изобретатель Н. Н. Азаров и др. разработали механизмы автоматической установки мин на заданное углубление и усовершенствовали способы постановки мин с надводных кораблей. Морские мины получили широкое применение в 1-й мировой войне 1914-18. Во 2-й мировой войне 1939-45 появились неконтактные мины (главным образом магнитные, акустические и магнитно-акустические). В конструкции неконтактных мин были введены приборы срочности и кратности, новые противотральные устройства. Для постановки мин в водах противника широко использовались самолеты. В 60-х появился новый класс мин - «атакующая» мина, которая представляет собой комбинацию минной платформы с торпедой или ракетой класса «вода - вода - цель» или «вода - воздух - цель». В 70-х были разработаны самотранспортирующиеся мины, в основе которых лежит противолодочная торпеда, доставляющая донную мину в район минирования, где последняя ложится на грунт.

Предшественница морских мин была впервые описана китайским артиллерийским офицером начального периода империи Мин Цзяо Ю в военном трактате XIV века под названием Холунцзин (en:Huolongjing). Китайские хроники рассказывают также об использовании взрывчатых веществ в XVI веке для борьбы против японских пиратов (вокоу). Морские мины помещались в деревянный ящик, герметизированный с помощью шпатлёвки. Генерал Ци Цзюйгуан сделал несколько таких дрейфующих мин с отложенным подрывом для преследования японских пиратских судов. В трактате Сут Инсина Тяньгун Кайу ("Использование явлений природы") 1637 г. описаны морские мины с длинным шнуром, протянутым до скрытой засады, расположенной на берегу. Дёргая за шнур, человек из засады приводил в действие стальной колесцовый замок с кремнём для получения искры и воспламенения взрывателя морской мины.

Первый проект по применению морских мин на Западе сделал Ральф Раббардс, он представил свои разработки английской королеве Елизавете в 1574 Голландский изобретатель Корнелиус Дреббель, работавший в артиллерийском управлении английского короля Карла I, занимался разработками оружия, в том числе «плавающих хлопушек», которые показали свою непригодность. Оружие этого типа, по-видимому, пытались применить англичане во время осады Ла-Рошели в 1627 году. Американец Давид Бушнель изобрёл первую практичную морскую мину для применения против Великобритании во время американской войны за независимость. Она представляла собой загерметизированную бочку с порохом, которая плыла в направлении противника, а её ударный замок взрывался при столкновении с судном.В 1812 году русский инженер Павел Шиллинг разработал электрический взрыватель подводной мины. В 1854 году, во время неудачной попытки англо-французского флота захватить крепость Кронштадт, несколько британских пароходов были повреждены в результате подводного взрыва российских морских мин. Более 1500 морских мин или «адских машин», разработанных Борисом Якоби, были установлены российскими военно-морскими специалистами в Финском заливе во время Крымской войны. Якоби создал морскую якорную мину, обладавшую собственной плавучестью (за счёт воздушной камеры в её корпусе), гальваноударную мину, ввёл подготовку специальных подразделений гальванёров для флота и саперных батальонов.

По официальным данным ВМФ России, первое успешное применение морской мины состоялось в июне 1855 года на Балтике во время Крымской войны. На минах, выставленных русскими минёрами в Финском заливе, подорвались корабли англо-французской эскадры. Западные источники приводят более ранние случаи - 1803 и даже 1776 год. Успех их, однако, не подтвержден.Морские мины широко применялись во время Крымской и русско-японской войн. В Первую мировую было установлено 310 тыс. морских мин, от которых затонуло около 400 кораблей, в том числе 9 линкоров.
Морские мины могут устанавливаться как надводными кораблями (судами) (минными заградителями), так и с подводных лодок (через торпедные аппараты, из специальных внутренних отсеков/контейнеров, из внешних прицепных контейнеров), или сбрасываться авиацией. Также могут устанавливаться с берега на небольшой глубине противодесантные мины.

Для борьбы с морскими минами используются все наличные средства, как специальные так и подручные.Классическим средством являются корабли - тральщики. Могут использовать контактные и неконтактные тралы, поисковые противоминные аппараты или другие средства. Трал контактного типа перерезает минреп, и всплывшие на поверхность мины расстреливаются из огнестрельного оружия. Для защиты минных заграждений от вытраливания контактными тралами используется минный защитник.Неконтактные тралы создают физические поля, вызывающие срабатывание взрывателей.Кроме тральщиков специальной постройки используются переоборудованные корабли и суда.С 40-х годов в качестве тральщиков может использоваться авиация, в том числе с 70-х вертолёты.Подрывные заряды уничтожают мину в месте постановки. Могут устанавливаться поисковыми аппаратами, боевыми пловцами, подручными средствами, реже авиацией.Прорыватели минных заграждений - своего рода корабли-камикадзе - вызывают срабатывание мин собственным присутствием.Морские мины совершенствуются в направлениях увеличения мощности зарядов, создании новых типов неконтактных взрывателей и повышения устойчивости к тралению. https://ru.wikipedia.org/wiki

Особой популярностью морское минное оружие (мы здесь будем понимать под этим термином только морские мины и минные комплексы различных типов) пользуется сегодня у стран, которые не обладают мощными военными флотами, но имеют достаточно протяженное побережье, а также у так называемых стран третьего мира или же террористических (преступных) сообществ, не имеющих по тем или иным причинам возможности закупать современные высокоточные средства поражения для своих военно-морских сил (такие как противокорабельные и крылатые ракеты, самолеты-ракетоносцы, боевые корабли основных классов).http://nvo.ng.ru/armament/2008-08-01/8_mina.html

Главные причины этого – чрезвычайная простота конструкции морских мин и легкость их эксплуатации по сравнению с другими видами морского подводного оружия, а также весьма умеренная цена, в разы отличающаяся от тех же противокорабельных ракет.«Дешево, но сердито» – такой девиз можно без всяких оговорок применить к современному морскому минному оружию.

Командование военно-морских сил стран Запада вплотную столкнулось с «асимметричной», как часто ее называют за рубежом, минной угрозой в ходе недавних контртеррористических и миротворческих операций, в рамках которых привлекались достаточно крупные силы флота. Оказалось, что мины – даже устаревших типов – представляют собой весьма серьезную угрозу для современных боевых кораблей. Под ударом оказалась и концепция литоральной войны, на которую в последнее время делают ставку ВМС США.

Причем высокий потенциал морского минного оружия обеспечивается не только благодаря их высоким тактико-техническим характеристикам, но и за счет высокой гибкости и разнообразия тактики его применения. Так, например, противник может выполнять минные постановки в своих территориальных или даже внутренних водах, под прикрытием средств береговой обороны и в наиболее удобное для него время, что существенно повышает фактор внезапности его применения и ограничивает возможности противостоящей стороны по своевременному выявлению минной угрозы и ее устранению. Особенно велика опасность, исходящая от донных мин с неконтактными взрывателями разных типов, устанавливаемых в мелководных районах прибрежных морей: системы обнаружения мин в этом случае функционируют более эффективно, а плохая видимость, сильные прибрежные и приливно-отливные течения, наличие большого количества миноподобных объектов (ложных целей) и близость военно-морских баз или объектов береговой обороны противника затрудняет работу минно-тральных сил и групп водолазов-минеров потенциального агрессора.

По оценкам военно-морских экспертов, морские мины – это «квинтэссенция асимметричной войны современности». Они легко устанавливаются и могут оставаться на боевой позиции в течение многих месяцев и даже лет, не требуя дополнительного обслуживания или выдачи каких-то команд. На них никоим образом не влияют ни изменение концептуальных положений ведения войны на море, ни смена политического курса страны. Они просто лежат там, на дне, и ждут свою жертву.Для наилучшего понимания того, насколько высокий потенциал имеют современные мины и минные комплексы, рассмотрим несколько образцов российского морского минного оружия, которые разрешены на экспорт.

Например, донная мина МДМ-1 Мод. 1, выставляемая как с подводных лодок с торпедными аппаратами калибра 534 мм, так и с надводных кораблей, предназначена для уничтожения надводных кораблей противника и его подводных лодок, находящихся в подводном положении. Имея боевую массу 960 кг (лодочная версия) или 1070 кг (ставится с надводных кораблей) и боевую часть, эквивалентную заряду тротила массой 1120 кг, она способна находиться на позиции во «взведенном состоянии» не менее одного года, и после истечения назначенного ей времени боевой службы она просто самоликвидируется (что избавляет от необходимости заниматься ее поиском и уничтожением). Мина имеет достаточно широкий диапазон по глубине применения – от 8 до 120 м, оснащена трехканальным неконтактным взрывателем, реагирующим на акустическое, электромагнитное и гидродинамическое поля корабля-цели, приборами срочности и кратности, а также имеет эффективные средства противодействия современным минно-тральным комплексам различных типов (контактные, неконтактные тралы и пр.). Кроме того, обнаружение мины при помощи акустических и оптических средств затруднено примененными маскировочной окраской и особым материалом корпуса. Впервые мину, принятую на вооружение в 1979 году, продемонстрировали широкой публике на выставке вооружений и военной техники в Абу-Даби (IDEX) в феврале 1993 года. Заметим – это мина, принятая в отечественном флоте на вооружение почти 30 лет назад, но ведь после нее были и другие донные мины;

Другой образец отечественного минного оружия – противолодочный минный комплекс ПМК-2 (экспортное обозначение противолодочной мины-торпеды ПМТ-1, принятой на вооружение ВМФ СССР в 1972 году и прошедшей в 1983 году модернизацию по варианту МТПК-1), предназначенный для уничтожения подводных лодок противника различных классов и типов на глубинах от 100 до 1000 м. Постановка ПМК-2 может выполняться из 534-мм торпедных аппаратов подводных лодок на глубинах до 300 метров и скорости хода до восьми узлов, либо с надводных кораблей на скорости до 18 узлов, либо же с самолетов противолодочной авиации с высот не более 500 м и на скорости полета до 1000 км/час.

Отличительной особенностью данного минного комплекса является использование в качестве боевой части малогабаритной противолодочной торпеды (последняя, в свою очередь, имеет БЧ массой 130 кг в тротиловом эквиваленте и оснащена комбинированным взрывателем). Общая масса ПМК-2 в зависимости от модификации (типа постановщика) составляет от 1400 до 1800 кг. После постановки ПМК-2 может находиться на позиции в боеспособном состоянии не менее одного года. Гидроакустическая система комплекса постоянно ведет наблюдение в своем секторе, обнаруживает цель, классифицирует ее и выдает данные в счетно-решающее устройство для определения элементов движения цели и выработки данных для пуска торпеды. После выхода торпеды в зону цели на назначенную глубину она начинает движение по спирали, а ее ГСН осуществляет поиск цели и последующий ее захват. Аналогом ПМК-2 является американский противолодочный минный комплекс Mk60 Mod0/Mod1 CAPTOR (enCAPsulated TORpedo), поступавший в ВМС Соединенных Штатов с 1979 года, но уже снятый и с вооружения, и с производства.

Впрочем, за рубежом о «рогатой смерти» стремятся не забывать. Такие страны, как США, Финляндия, Швеция и целый ряд других, ведут сегодня активную работу по модернизации старых и разработке новых типов мин и минных комплексов. Едва ли не единственной морской державой, которая почти полностью отказалась от использования боевых морских мин, стала Великобритания. Так, например, в 2002 году в официальном ответе на парламентский запрос командующий Королевскими ВМС отмечал, что они «не располагают никакими запасами морских мин с 1992 года. В то же время Соединенное Королевство сохраняет возможности по использованию данного типа вооружения и продолжает осуществлять НИОКР в данной области. Но флот использует только практические (учебные) мины – в ходе учений для отработки навыков личного состава».

Однако на британские компании такой «самозапрет» не распространяется, и, например, BAE Systems производит на экспорт мину типа «Стоунфиш». В частности, эта мина, оснащенная комбинированным взрывателем, реагирующим на акустическое, магнитное и гидродинамическое поля корабля, состоит на вооружении в Австралии. Мина имеет рабочий диапазон глубин 30–200 м и может выставляться с самолетов, вертолетов, надводных кораблей и подводных лодок.

Из зарубежных образцов морского минного оружия следует отметить американскую самотранспортирующуюся донную мину Mk67 SLMM (Submarine-Launched Mobile Mine), которая предназначена для скрытого минирования мелководных (фактически – прибрежных) районов морей, а также фарватеров, акваторий военно-морских баз и портов, подход к которым подводной лодки, выполняющей минную постановку, слишком опасен по причине сильной противолодочной обороны противника или затруднен вследствие особенностей рельефа дна, малых глубин и пр. В таких случаях субмарина-носитель может осуществлять минную постановку с расстояния, равного дальности хода самой мины, которая после выхода из торпедного аппарата ПЛ за счет своей электрической энергоустановки выдвигается в заданный район и ложится на грунт, превращаясь в обычную донную мину, способную обнаруживать и атаковать надводные корабли и подводные лодки. Принимая во внимание тот факт, что дальность хода мины составляет около 8,6 миль (16 км), а ширина территориальных вод равна 12 милям, можно без труда заметить, что подводные лодки, оснащенные такими минами, могут в мирное время или накануне начала боевых действий без особого труда выполнять минирование прибрежных районов потенциального противника.

Внешне Mk67 SLMM выглядит как стандартная торпеда. Впрочем, в ее состав торпеда как раз и входит – сама мина построена на базе торпеды Mk37 Mod2, в конструкцию которой было внесено около 500 изменений и усовершенствований. В том числе изменениям подверглась боевая часть – вместо типовой БЧ установлена мина (в ней применено ВВ типа PBXM-103). Модернизации подверглась бортовая аппаратура системы наведения, а также были применены комбинированные неконтактные взрыватели Mk58 и Mk70, аналогичные устанавливаемым на американских донных минах семейства «Квикстрайк». Рабочая глубина применения мины колеблется от 10 до 300 м, а минный интервал (расстояние между двумя соседними минами) составляет 60 м.Недостатком Mk67 SLMM является ее «аналоговый» характер, вследствие чего при использовании мины на субмаринах с «цифровой» БИУС необходимо выполнение дополнительных действий по «адаптации» к носителю.

Разработка Mk67 SLMM была начата в 1977–1978 годах и первоначальными планами предусматривалось к 1982 году поставить ВМС Соединенных Штатов 2421 мину нового типа. Однако работы по ряду причин, в том числе из-за завершения холодной войны, затянулись, и состояния начальной оперативной готовности комплекс достиг только в 1992 году (что равнозначно постановке ее на вооружение). В конечном итоге Пентагон приобрел у производителя – компании «Рейтеон Нэйвал энд Мэритайм Интегрейтед Системс Компании» (г. Портсмут, бывшая «Дивей Электроникс») – только 889 мин, из которых наиболее старые уже снимаются с вооружения и утилизируются вследствие истечения сроков хранения. Аналогом данной мины являются российские самотранспортирующиеся донные мины семейства СМДМ, созданные на базе 533-мм торпеды 53-65КЭ и 650-мм торпеды 65-73 (65-76).

В последнее время в США ведутся работы по модернизации минного комплекса Mk67 SLMM, которые осуществляются по нескольким направлениям: во-первых, увеличивается дальность самостоятельного хода мины (за счет усовершенствования энергоустановки) и повышается ее чувствительность (за счет установки более нового программируемого неконтактного взрывателя типа TDD Mk71); во-вторых, компания «Ханиуэлл Марин Системс» предлагает свой вариант мины – на базе торпеды NT-37E, а в-третьих, еще в 1993 году начаты работы по созданию новой модификации самотранспортирующейся мины на базе торпеды Mk48 Mod4 (изюминкой мины должно стать наличие двух БЧ, имеющих возможность разделяться и детонировать независимо друг от друга, подрывая, таким образом, две раздельные цели).

Американские военные также продолжают совершенствовать донные мины семейства «Квикстрайк», созданные на базе авиационных бомб серии Mk80 различных калибров. Причем эти мины постоянно применяются в различных учениях ВМС и ВВС Соединенных Штатов и их союзников.

Отдельного упоминания заслуживают работы в области морского минного оружия, проводимые финскими специалистами. Это особенно интересно в связи с тем, что военно-политическое руководство Финляндии на официальном уровне объявило о том, что оборонительная стратегия государства на морском направлении будет основываться на широком использовании морских мин. При этом минные поля, призванные превратить прибрежные районы в «суп с клецками», будут прикрываться береговыми артиллерийскими батареями и ракетными дивизионами береговой обороны.

Новейшей разработкой финских оружейников является минный комплекс М2004, серийный выпуск которого начат в 2005 году – первый контракт на морские мины под обозначением «Морская мина 2000» компания «Патрия» (главный подрядчик по программе) получила в сентябре 2004 года, обязавшись поставить неназванное их количество в 2004–2008 годах и осуществлять затем техническое обслуживание изделий в местах хранения и эксплуатации.

Морское минное оружие – это «тайна за семью печатями» наравне с торпедным оружием составляющее предмет особой гордости тех держав, которые могут его самостоятельно разрабатывать и производить. Сегодня морские мины различных типов состоят на вооружении военно-морских сил 51 страны мира, причем из них 32 способны сами заниматься их серийным выпуском, а 13 – экспортируют их в другие страны. При этом только в ВМС США после войны в Корее из 18 потерянных и сильно поврежденных боевых кораблей 14 стали жертвами именно морского минного оружия.

Если же оценивать объем усилий, затрачиваемых даже самыми передовыми странами мира на ликвидацию минной угрозы, то достаточно привести такой пример. Накануне Первой войны в Заливе, в январе–феврале 1991 года, иракские ВМС выставили в прибрежных районах Кувейта, на десантоопасных направлениях, более 1300 морских мин 16 различных типов, что в том числе стало причиной срыва «блестяще продуманной» морской десантной операции американцев. После изгнания иракских войск с территории Кувейта силам многонациональной коалиции понадобилось несколько месяцев для того, чтобы полностью очистить указанные районы от мин. По обнародованным данным, противоминным силам военно-морских сил США, Германии, Великобритании и Бельгии удалось найти и уничтожить 112 мин – преимущественно старые советские авиационные донные мины АМД и корабельные мины КМД с неконтактными взрывателями «Краб».

Памятна всем и «минная война», устроенная в Персидском заливе в конце 1980-х годов. Интересно, что тогда командиры американских боевых кораблей, выделенных для эскортирования коммерческих судов в зоне «пылающего огнем» залива, быстро сообразили: нефтеналивные танкеры благодаря особенностям конструкции (двойной корпус и пр.) оказались относительно малоуязвимы перед угрозой со стороны морских мин. И тогда американцы стали ставить танкеры, особенно идущие порожняком, в голове конвоя – даже впереди эскортных боевых кораблей.

В целом в период с 1988 по 1991 год именно мины послужили причиной серьезных повреждений, полученных американскими боевыми кораблями, действовавшими в водах Персидского залива:– 1988 год – на иранской мине типа М-08 подорвался фрегат УРО «Сэмюэль Б. Робертс», получивший пробоину размером 6,5 м (были сорваны с фундаментов механизмы, поломан киль) и выдержавший затем ремонт стоимостью 135 млн. долл.;– февраль 1991 года – десантный вертолетоносец «Триполи» подорвался предположительно на иракской мине типа LUGM-145, а крейсер УРО «Принстон» – также на иракской донной мине типа «Манта» итальянской разработки (взрыв повредил аппаратуру системы «Иджис», УВП ЗРК, валопровод гребного винта, руль и часть надстроек и палуб). Следует при этом отметить, что оба этих корабля входили в состав крупного амфибийного соединения с 20 тыс. морских пехотинцев на борту, которому была поставлена задача провести морскую десантную операцию (в ходе освобождения Кувейта американцы так и не смогли провести ни одной морской десантной операции).

Кроме того, эсминец УРО «Пол Ф. Фостер» наскочил на якорную контактную, «рогатую», мину и только по счастливой случайности остался невредим – она оказалась слишком старой и просто не сработала. Кстати, в том же конфликте американский тральщик «Авенджер» стал первым противоминным кораблем в истории, который в боевых условиях обнаружил и обезвредил мину типа «Манта» – одну из лучших «мелководных» донных мин в мире.

Когда же настало время операции «Свобода Ираку», союзным силам пришлось поволноваться более серьезно. В районах действия сил и средств объединенной группировки военно-морских сил, только по официально обнародованным Пентагоном данным, были обнаружены и уничтожены 68 мин и миноподобных объектов. Хотя такие данные вызывают обоснованные сомнения: например, одних только мин типа «Манта» было обнаружено, по данным американских военных, несколько десятков, да плюс к тому 86 «мант» нашли австралийцы на складах и минных заградителях иракцев. Кроме того, подразделениям американских сил специальных операций удалось обнаружить и перехватить грузовое судно, буквально «забитое» иракскими якорными и донными минами, которые предполагалось выставить на линиях коммуникаций в Персидском заливе и предположительно в Ормузском проливе. Причем каждая мина была замаскирована в специальном «коконе», изготовленном из пустой бочки из-под нефти. И уже после завершения активной фазы боевых действий американские оперативно-поисковые группы наткнулись еще на несколько маломерных судов, переоборудованных в минные заградители.

Особо следует отметить, что в ходе Второй войны в Заливе в районе боевых действий и на территории военно-морских баз и пунктов базирования ВМС США и их союзников в зоне Персидского залива активно использовались американские подразделения, имевшие дельфинов и калифорнийских львов, специально обученных для борьбы с морскими минами и миноподобными объектами. В частности, «животные в погонах» привлекались для охраны военно-морской базы в Бахрейне. Точные данные о результатах использования таких подразделений официально не обнародовались, но американское военное командование признало факт гибели одного дельфина-сапера.

Дополнительное напряжение в ходе операции создавало то, что военнослужащих минно-тральных сил и подразделения водолазов-минеров часто привлекали не только к поиску и уничтожению мин и миноподобных объектов всех типов – плавучих, якорных, донных, «самозакапывающихся» и пр., но и к уничтожению противодесантных минно-взрывных и иных заграждений (например, противотанковые минные поля на берегу).

В отечественном флоте операции по разминированию тоже оставили свой неизгладимый отпечаток. Особенно памятно разминирование Суэцкого канала, проводившееся советским ВМФ по просьбе правительства Египта с 15 июля 1974 года. Со стороны СССР участвовали 10 тральщиков, 2 шнуроукладчика и еще 15 кораблей охранения и вспомогательных судов; принимали участие в тралении канала и залива также французские, итальянские, американские и британские ВМС. Причем «янки» и «томми» тралили районы с выставленными минами советского образца – что немало помогло им в отработке действий по борьбе с минным оружием вероятного противника. Кстати, разрешение американо-британским союзникам на траление данных районов было выдано военно-политическим руководством Египта в нарушение Соглашения о военных поставках от 10 сентября 1965 года, подписанным СССР и АРЕ.

Впрочем, это нисколько не умаляет значения того бесценного опыта, который получен советскими моряками в Суэцком канале. Именно тогда в реальных условиях, на боевых минах, были отработаны действия по уничтожению донных мин при помощи вертолетов-тральщиков, укладывавших шнуровые заряды или буксировавших неконтактные тралы. Были также отработаны применение всех видов тралов и искателей мин в тропических условиях, использование трала «ВКТ» для пробивки первого галса и «БШЗ» (боевой шнуровой заряд) для разрежения минного поля боевых мин вертолетами. Исходя из полученного опыта, советскими специалистами-минерами были откорректированы наставления по тралению, существовавшие в ВМФ СССР. Было также подготовлено большое количество офицеров, старшин и матросов, приобретших бесценный опыт боевого траления.

Вследствие изменившегося характера минной войны на море и расширения круга задач противоминных сил их подразделения должны быть готовы равно эффективно действовать как в глубоководных и мелководных районах океанов и морей, так и в чрезвычайно мелководных районах прибрежных зон, рек и озер, а также в приливно-отливной зоне (полосе прибоя) и даже на «пляже». Особо хотелось бы отметить, что в последнее десятилетие прошлого века наметилась явная тенденция использования военными стран третьего мира достаточно интересного способа минных постановок – старые контактные якорные и более современные неконтактные донные мины стали использоваться в рамках одного минного поля, что затрудняло сам процесс проведения траления, поскольку требовало от противоминных сил применения разных видов тралов (а для поиска донных мин – еще и подводных необитаемых противоминных аппаратов).

Все это требует от военнослужащих минно-тральных сил не только соответствующей разносторонней подготовки, но и наличия необходимых вооружений и технических средств обнаружения мин и миноподобных объектов, их обследования и последующего уничтожения.

Особая опасность современного морского минного оружия и его стремительного распространения по миру заключается в том, что на акватории, благоприятные для выполнения постановок морских мин, приходится сегодня до 98% мирового торгового судоходства. Немаловажно и следующее обстоятельство: современные концепции применения военно-морских сил ведущих стран мира особое внимание уделяют возможности корабельных группировок выполнять различные маневры – в том числе в прибрежной, или «литоральной», зоне. Морские же мины ограничивают действия боевых кораблей и вспомогательных судов, становясь, таким образом, существенным препятствием для решения ими назначенных тактических задач. Итог – для ведущих стран мира, располагающих крупными военно-морскими силами, теперь стало более предпочтительным создавать эффективные противоминные силы, чем заниматься разработкой мин и минных заградителей.

В связи со всем вышесказанным в военно-морских силах ведущих стран мира развитию противоминных сил и средств в последнее время уделяется повышенное внимание. При этом упор делается на применение современных технологий и использование необитаемой дистанционно-управляемой подводной техники.

Современные морские мины похоже являются самым грозным оружием с обеих сторон, с помощью которого можно на длительное время перекрыть морские коммуникации по всему миру так,что будут невозможны не только военные действия, но и остановлена торговля и другая мирная деятельность. В этом направлении должны быть разработаны соответствующие договоры.

Что такое морские мины и торпеды? Как они устроены и каковы принципы их действия? Являются ли в настоящее время мины и торпеды таким же грозным оружием как и во времена прошедших войн?

Обо всем этом рассказывается в брошюре.

Она написана по материалам открытой отечественной и зарубежной печати, а вопросы использования и развития минно-торпедного оружия изложены по взглядам иностранных специалистов.

Адресуется книга широкому кругу читателей, особенно молодежи, готовящейся к службе в Военно-Морском Флоте СССР.

Разделы этой страницы:

Современные мины и их устройство

Современная морская мина - это сложное конструктивное устройство, автоматически действующее под водой.

Мины могут выставляться с надводных кораблей, подводных лодок и самолетов на путях движения кораблей, у портов и баз противника. "Некоторые мины ставятся на дне моря (рек, озер) и могут быть приведены в действие кодовым сигналом.

Наиболее сложными считаются самодвижущиеся мины, в которых используются положительные свойства якорной мины и торпеды. Они имеют устройства для обнаружения цели, отделения торпеды от якоря, наведения на цель и подрыва заряда неконтактным взрывателем.

Различают три класса мин: якорные, донные и плавающие.

Якорные и донные мины служат для создания неподвижных минных заграждений.

Плавающие мины обычно применяются на речных театрах для поражения расположенных вниз по течению реки мостов и переправ противника, а также его кораблей и плавучих средств. Они могут применяться и на море, но при условии, что поверхностное течение направлено в район базирования противника. Существуют и плавающие самодвижущиеся мины.

Мины всех классов и типов имеют заряд обычного взрывчатого вещества (тротил) весом от 20 до нескольких сот килограммов. Они могут оснащаться и ядерными зарядами.

В зарубежной печати, например, сообщалось, что ядерный заряд с тротиловым эквивалентом в 20 кт способен на расстоянии до 700 м наносить сильные разрушения, топить или выводить из строя авианосцы и крейсеры, а на расстоянии до 1400 м наносить повреждения, значительно снижающие боеспособность этих кораблей.

Взрыв мин вызывается взрывателями, которые бывают двух типов - контактные и неконтактные.

Контактные взрыватели срабатывают от непосредственного соприкосновения корпуса корабля с миной (ударные мины) или с ее антенной (взрыватель электроконтактного действия). Ими, как правило, оснащаются якорные мины.

Неконтактные взрыватели срабатывают от воздействия на них магнитного или акустического поля корабля или от комбинированного воздействия этих двух полей. Они чаще служат для подрыва донных мин.

Тип мины обычно определяется типом взрывателя. Отсюда мины подразделяются на контактные и неконтактные.

Контактные мины бывают ударные и антенные, а неконтактные -"акустические, магнитно-гидродинамические, акустико-гидродинамические и др.

Якорные мины

Якорная мина (рис. 2) состоит из водонепроницаемого корпуса диаметром от 0,5 до 1,5 м, минрепа, якоря, взрывающих приспособлений, предохранительных устройств, обеспечивающих безопасность обращения с миной при приготовлении ее на палубе корабля к постановке и при сбрасывании в воду, а также из механизмов, устанавливающих мину на заданное углубление.

Корпус мины может быть шаровидной, цилиндрической, грушевидной или другой обтекаемой формы. Он делается из стальных листов, стеклопластиков и других материалов.

Внутри корпуса имеется три отделения. Одно из них представляет собой воздушную полость, которая обеспечивает положительную плавучесть мины, необходимую для удержания мины на заданном углублении от поверхности моря. В другом отделении помещаются заряд и детонаторы, а в третьем - различные приборы.

Минреп представляет собой стальной трос (цепь), который, наматывается на вьюшку (барабан), установленную на якоре мины. Верхний конец минрепа крепится к корпусу мины.

В собранном и приготовленном к постановке виде мина лежит на якоре.

Якоря мин металлические. Их делают в виде чашки или тележки с роликами, благодаря которым мины могут легко передвигаться по рельсам или по гладкой стальной палубе корабля.

Якорные мины приводятся в действие посредством различных контактных и неконтактных взрывателей. Контактные взрыватели чаще всего бывают гальваноударные, ударно-электрические и ударно-механические.

Гальваноударные и ударно-электрические взрыватели устанавливаются также в некоторых донных минах, которые ставятся в прибрежной мелководной полосе специально против высадочных средств противника. Такие мины принято называть противодесантными.


1 - предохранительный прибор; 2 - гальваноударный взрыватель; 3-запальный стакан; 4- зарядная камера

Основными деталями гальванических взрывателей являются свинцовые колпаки, внутри которых помещаются стеклянные баллоны с электролитом (рис. 3), и гальванические элементы. Колпаки располагаются на поверхности корпуса мины. От удара о корпус корабля свинцовый колпак сминается, баллон разбивается и электролит попадает на электроды (угольный - положительный, цинковый - отрицательный). В гальванических элементах появляется ток, который от электродов попадает в электрозапал и приводит его в действие.

Свинцовые колпаки закрыты чугунными предохранительными колпаками, которые автоматические сбрасываются пружинами после постановки мины.

Ударно-электрические взрыватели приводятся в действие ударно-электрическим способом. В мине с такими взрывателями выступают несколько металлических стержней, которые от удара о корпус корабля изгибаются или вдвигаются внутрь, подключая запал мины к электрической батарее.

В ударно-механических взрывателях взрывающим приспособлением является ударно-механический прибор, который приводится в действие от удара о корпус корабля. От сотрясения во взрывателе происходит смещение инерционного груза, удерживающего подпружинную рамку с бойком. Освободившийся боек накалывает капсюль запального устройства, которое приводит в действие заряд мины.

Предохранительные устройства, как правило, состоят из сахарных или гидростатических разъединителей, либо тех и других вместе взятых.



1 - чугунный предохранительный колпак; 2 - пружина для сбрасывания предохранительного колпака после постановки мины; 3 - свинцовый колпак с гальваническим элементом; 4 - стеклянный баллон с электролитом; 5 - угольный электрод; 6 - цинковый электрод; 7 - изоляционная шайба; 8 - проводники от угольного и цинкового электродов

Сахарный разъединитель представляет собой кусок сахара, вставляемый между дисками пружинного контакта. При вставленном сахаре цепь взрывателя разомкнута.

В воде сахар через 10-15 мин растворяется, и пружинный контакт, замыкая цепь, делает мину опасной.

Гидростатический разъединитель (гидростат) препятствует соединению дисков пружинного контакта или смещению инерционного грузика (в ударно-механических минах), пока мина находится на корабле. При погружении от давления воды гидростат освобождает пружинный контакт или инерционный грузик.



А - заданное углубление мины; I - минреп; II - якорь мины; 1 - мина сброшена; 2 - мина тонет; 3- мина на грунте; 4-минреп сматывается; 5-мина установилась на заданной глубине

По способу постановки якорные мины делятся на всплывающие со дна [* Этот способ постановки якорных мин был предложен адмиралом Макаровым С О. в 1882 г.] и устанавливаемые с поверхности [** Способ постановки мин с поверхности был предложен лейтенантом Черноморского флота Азаровым Н. Н. в 1882 г.].



h - заданное углубление мины; I-якорь мины; II -штерт; III-груз; IV - минреп; 1-мина сброшена; 2 - мина отделилась от якоря, минреп свободно сматывается с вьюшки; 3. 4- мина на поверхности, минреп продолжает сматываться; 5 - груз дошел до грунта, минреп перестал сматываться; 6 - якорь тянет мину вниз и устанавливает на заданной глубине, равной длине штерта

При постановке мины со дна барабан с минрепом составляет одно целое с корпусом мины (рис. 4).

Мина скреплена с якорем стропами из стального троса, которые не позволяют ей отделиться от якоря. Стропы одним концом закреплены наглухо к якорю, а другим концом пропущены через специальные ушки (обухи) в корпусе мины и затем присоединены к сахарному разъединителю в якоре.

При постановке после падения в воду мина вместе с якорем идет на дно. Через 10-15 мин сахар растворяется, освобождает стропы и мина начинает всплывать.

Когда мина придет на заданное углубление от поверхности воды (h), гидростатический прибор, расположенный около барабана, застопорит минреп.

Вместо сахарного разъединителя может применяться часовой механизм.

Постановка якорных мин с поверхности воды осуществляется следующим образом.

На якоре мины помещается вьюшка (барабан) с намотанным на нее минрепом. К вьюшке прикрепляется специальный стопорящий механизм, соединенный посредством штерта (шнура) с грузом (рис. 5).

Когда мину сбрасывают за борт, она вследствие запаса плавучести держится на поверхности воды, якорь же отделяется от нее и тонет, разматывая минреп с вьюшки.

Перед якорем движется груз, закрепленный на штерте, длина которого равняется Заданному углублению мины (h). Груз первым касается дна и тем"самым дает некоторую слабину штерту. В этот момент срабатывает стопорящий механизм и разматывание минрепа прекращается. Якорь же продолжает движение на дно, увлекая за собой мину, которая погружается на углубление, равное длине штерта.

Данный способ постановки мин еще называют штерто-грузовым. Он получил широкое распространение во многих флотах.

По весу заряда якорные мины подразделяют на малые, средние и большие. Малые мины имеют заряд весом 20-100 кг. Они применяются против небольших кораблей и судов в районах с глубиной до 500 м. Небольшие размеры мин позволяют принимать их на минные заградители по нескольку сотен штук.

Средние мины с зарядами 150-200 кг предназначаются для борьбы с кораблями и судами среднего водоизмещения. Длина их минрепа достигает 1000-1800 м.

Большие мины имеют вес заряда 250 -300 кг и более. Они предназначены для действий против крупных кораблей. Имея большой запас плавучести, эти мины позволяют наматывать на вьюшку длинный минреп. Это дает возможность ставить мины в районах с глубиной моря более 1800 м.

Антенные мины представляют собой обычные якорные ударные мины, имеющие электроконтактные взрыватели. Их принцип работы основан на свойстве неоднородных металлов, например цинка и стали, помещенных в морскую воду, создавать разность потенциалов. Эти мины используются главным образом для борьбы с подводными лодками.

Антенные мины ставятся на углубление около 35 м и снабжаются верхней и нижней металлическими антеннами длиной примерно 30 м каждая (рис. 6).

Верхняя антенна удерживается в вертикальном положении при помощи буйка. Заданное углубление буйка не должно быть больше осадки надводных кораблей противника.

Нижний же конец нижней антенны скрепляется с минрепом мины. Концы антенн, обращенные к мине, соединяются между собой проводом, который проходит внутрь корпуса мины.

Если подводная лодка столкнется непосредственно с миной, то она подорвется на ней так же, как и на якорной ударной мине. Если же подводная лодка коснется антенны (верхней или нижней), то в проводнике возникнет ток, он поступает на чувствительные приборы, подключающие электрозапал к постоянному источнику тока, размещенному в мине и имеющему достаточную мощность, чтобы привести электрозапал в действие.

Из сказанного видно, что антенные мины перекрывают верхний слой воды толщиной около 65 м. Чтобы увеличить толщину этого слоя, ставят вторую линию антенных мин на большее углубление.

На антенной мине может подорваться и надводный корабль (судно), однако взрыв обычной мины на расстоянии 30 м от киля значительных разрушений не приносит.


Зарубежные специалисты считают, что допустимая техническим устройством якорных ударных мин наименьшая глубина постановки составляет не менее 5 м. Чем ближе мина к поверхности моря, тем больше эффект ее взрыва. Поэтому в заграждениях, предназначенных против больших кораблей (крейсеров, авианосцев), эти мины рекомендуется ставить с заданным углублением в 5-7 м. Для борьбы с малыми кораблями углубление мин не превышает 1-2 м. Такие постановки мин опасны даже для катеров.

Но мелко поставленные минные заграждения легко обнаруживаются самолетами и вертолетами и, кроме того, быстро разрежаются (разносятся) под действием сильного волнения, течения и дрейфующего льда.

Срок боевой службы контактной якорной мины ограничен в основном сроком службы минрепа, который ржавеет в воде и теряет свою прочность. При волнении он может оборваться, так как сила рывков на минреп у малых и средних мин достигает сотен килограммов, а у больших мин - нескольких тонн. На живучесть минрепов и особенно на места их крепления с миной влияют также и приливно-отливные течения.

Зарубежные специалисты считают, что в незамерзающих морях и в районах моря, которые прикрываются островами или конфигурацией берега от волнения, вызываемого господствующими ветрами, даже мелко поставленное минное заграждение может простоять без особого разрежения 10-12 месяцев.

Медленнее всего разрежаются глубоко поставленные минные заграждения, предназначенные для борьбы с подводными лодками, идущими в подводном положении.

Контактные якорные мины отличаются простотой конструкции и дешевизной изготовления. Однако они имеют два существенных недостатка. Во-первых, мины должны иметь запас положительной плавучести, что ограничивает вес размещенного в корпусе заряда, а следовательно, и эффективность применения мин против больших кораблей. Во-вторых, такие мины легко могут быть подняты на поверхность воды любыми механическими тралами.

Опыт боевого применения контактных якорных мин в первую мировую войну показал, что они не полностью удовлетворяли требованиям борьбы с кораблями противника: из-за малой вероятности встречи корабля с контактной миной.

Кроме того, корабли, сталкиваясь с якорной миной, уходили обычно с ограниченными повреждениями носовой или бортовой части корабля: взрыв локализировался прочными переборками, водонепроницаемыми отсеками или броневым поясом.

Это привело к мысли создать новые взрыватели, которые могли бы чувствовать приближение корабля на значительном расстоянии и взрывать мину в тот момент, когда корабль будет находиться в опасной зоне от нее.

Создание таких взрывателей стало возможным лишь после того, как были открыты и изучены физические поля корабля: акустическое, магнитное, гидродинамическое и др. Поля как бы увеличивали осадку и ширину подводной части корпуса и при наличии на мине специальных приборов позволяли получать сигнал о приближении корабля.

Взрыватели, срабатывающие от воздействия того или иного физического поля корабля, назвали неконтактными. Они позволили создать донные мины нового типа и обеспечили возможность использования якорных мин для постановки в морях с большими приливами и отливами, а также в районах с сильным течением.

В этих случаях якорные мины с неконтактными взрывателями допускают постановку на таком углублении, что при отливах их корпуса не всплывают на поверхность, а при приливах мины остаются опасными для проходящих над ними кораблей.

Действия же сильных течений и приливов только несколько приглубляют корпус мины, но ее взрыватель все равно чувствует приближение корабля и взрывает мину в нужный момент.

По устройству якорные неконтактные мины сходны с якорными контактными минами. Отличие их состоит только в конструкции взрывателей.

Вес заряда неконтактных мин составляет 300- 350 кг, а постановка их, по мнению иностранных специалистов, возможна в районах с глубиной 40 м и более.

Неконтактный взрыватель срабатывает на некотором расстоянии от корабля. Это расстояние называют радиусом чувствительности взрывателя или неконтактной мины.

Настраивают неконтактный взрыватель так, чтобы радиус его чувствительности не превышал радиуса разрушительного действия взрыва мины на подводную часть корпуса корабля.

Неконтактный взрыватель устроен таким образом, что при подходе корабля к мине на расстояние, соответствующее радиусу ее чувствительности, происходит механическое замыкание контакта в боевой цепи, в которую подключен запал. В результате происходит взрыв мины.

Что же представляют собой физические поля корабля?

Магнитное поле, например, имеется у каждого стального корабля. Напряженность этого поля зависит главным образом от количества и состава металла, из которого построен корабль.

Появление же магнитных свойств у корабля обусловлено наличием магнитного поля Земли. Поскольку магнитное поле Земли неодинаково и меняется по величине с изменением широты места и курса корабля, то и магнитное поле корабля при плавании изменяется. Его принято характеризовать напряженностью, которую измеряют в эрстедах.

При приближении корабля, обладающего магнитным полем, к магнитной мине в последней вызывается колебание установленной во взрывателе магнитной стрелки. Отклоняясь от исходного положения, стрелка замыкает контакт в боевой цепи, и мина взрывается.

При движении корабль образует акустическое поле, которое создается главным образом шумом вращающихся винтов и работой многочисленных механизмов, размещенных внутри корпуса корабля.

Акустические колебания механизмов корабля создают суммарное колебание, воспринимаемое в виде шума. Шумы кораблей разных типов имеют свои особенности. У быстроходных кораблей, например, более интенсивно выражены высокие частоты, у тихоходных (транспортов) - низкие частоты.

Шум от корабля распространяется на значительное расстояние и создает вокруг него акустическое поле (рис. 7), которое и является средой, где срабатывают неконтактные акустические взрыватели.

Специальное устройство такого взрывателя, например угольный гидрофон, преобразует воспринимаемые колебания звуковой частоты, создаваемые кораблем, в электрические сигналы.

Когда сигнал достигает определенной величины, это значит, что корабль вошел в зону действия неконтактной мины. Через вспомогательные приборы электробатарея подключается на запал, который и приводит в действие мину.

Но угольные гидрофоны прослушивают шумы только в диапазоне звуковых частот. Поэтому для приема частот ниже и выше звуковой используются специальные акустические приемники.



Акустическое поле распространяется на гораздо большее расстояние, чем магнитное. Следовательно, представляется возможным создавать акустические взрыватели с большой зоной действия. Вот почему во вторую мировую войну большинство неконтактных взрывателей работало на акустическом принципе, а в комбинированных неконтактных взрывателях одним из каналов всегда был акустический.

При движении корабля в водной среде создается так называемое гидродинамическое поле, под которым подразумевается уменьшение гидродинамического давления во всем слое воды от днища корабля до дна моря. Это уменьшение давления является следствием вытеснения массы воды подводной частью корпуса корабля, а также возникает.как результат волнообразования под килем и за кормой быстро движущегося корабля. Так, например, крейсер водоизмещением около 10 000 т, идущий со скоростью 25 уз (1 уз = 1852 м/ч), в районе с глубиной моря 12-15 м создает понижение давления на 5 мм вод. ст. даже на расстоянии до 500 м справа и слева от себя.

Было установлено, что величины гидродинамических полей у различных кораблей различны и зависят в основном от скорости хода и водоизмещения. Кроме того, с уменьшением глубины района, в котором движется корабль, создаваемое им придонное гидродинамическое давление увеличивается.

Для улавливания изменения гидродинамического поля служат специальные приемники, которые реагируют на определенную программу смены повышенного и пониженного давлений, наблюдающихся при прохождении корабля. Эти приемники входят в состав гидродинамических взрывателей.

При изменении гидродинамического поля в определенных пределах смещаются контакты и замыкают электрическую цепь, приводящую в действие взрыватель. В результате происходит взрыв мины.

Считается, что приливно-отливные течения и волны могут создавать значительные изменения гидростатического давления. Поэтому для защиты мин от ложного срабатывания при отсутствии цели гидродинамические приемники обычно применяют в комбинации с неконтактными взрывателями, например, акустическими.

Комбинированные неконтактные взрыватели применяются в минном оружии довольно широко. Это вызвано рядом причин. Известно, например, что чисто магнитные и акустические донные мины сравнительно легко вытраливаются. Применение же комбинированного акустико-гидродинамического взрывателя значительно усложняет процесс траления, так как для этих целей требуются акустические и гидродинамические тралы. Если же на тральщике один из этих тралов выйдет из строя, то мина не будет вытралена и может взорваться при прохождении корабля над ней.

Для затруднения вытраливания неконтактных мин, помимо комбинированных неконтактных взрывателей, применяются специальные приборы срочности и кратности.

Прибор срочности, снабженный часовым механизмом, может быть установлен на срок действия от нескольких часов до нескольких суток.

До истечения срока установки прибора неконтактный взрыватель мины в боевую цепь не включится и мина не взорвется даже при прохождении корабля над ней или действии трала.

В такой обстановке противник, не зная установки приборов срочности (а она может быть различной в каждой мине), не сможет определить, до каких пор необходимо тралить фарватер, чтобы корабли смогли выйти в море.

Прибор кратности начинает срабатывать только по истечении срока установки прибора срочности. Он может быть установлен на одно или несколько прохождений корабля над миной. Чтобы взорвать такую мину, кораблю (тралу) нужно пройти над ней столько раз, какова установка кратности. Всё это значительно усложняет борьбу с минами.

Неконтактные мины могут взрываться не только от рассмотренных физических полей корабля. Так, в зарубежной печати сообщалось о возможности создания неконтактных взрывателей, основу которых могут составлять высокочувствительные приемники, способные реагировать на изменения температуры и состава воды во время прохождения кораблей над миной, на светооптические изменения и т. п.

Считается, что физические поля кораблей содержат еще много неизученных свойств, которые могут быть познаны и применены в минном деле.

Донные мины

Донные мины обычно неконтактные. Они, как правило, имеют форму закругленного с обоих концов водонепроницаемого цилиндра длиной около 3 м и диаметром около 0,5 м.

Внутри корпуса такой мины размещается заряд, взрыватель и другое необходимое оборудование (рис. 8). Вес заряда донной неконтактной мины составляет 100- 900 кг.



/ - заряд; 2 - стабилизатор; 3 - аппаратура взрывателя

Наименьшая глубина постановки донных неконтактных мин зависит от их устройства и составляет несколько метров, а наибольшая, когда эти мины используются против надводных кораблей, не превышает 50 м.

Против подводных лодок, идущих в подводном положении на небольшом расстоянии от грунта, донные неконтактные мины ставятся в районах с глубинами моря более 50 м, но не глубже предела, обусловленного прочностью корпуса мины.

Взрыв донной неконтактной мины происходит под днищем корабля, где обычно не имеется противоминной защиты.

Считается, что такой взрыв наиболее опасен, так как он вызывает как местные повреждения днища, ослабляющие прочность корпуса корабля, так и общий изгиб днища вследствие неравномерной интенсивности воздействия по длине корабля.

Надо сказать, что пробоины в этом случае по размерам оказываются больше, чем при взрыве мины у борта, что приводит к гибели корабля.-

Донные мины в современных условиях нашли очень широкое применение и привели к некоторому вытеснению якорных мин. Однако при постановке на глубинах более 50 м они требуют очень большого заряда взрывчатого вещества.

Поэтому для больших глубин все еще применяются обычные якорные мины, хотя они и не имеют таких тактических преимуществ, которыми обладают донные неконтактные мины.

Плавающие мины

Современные плавающие (самотранспортирующиеся) мины автоматически управляются приборами различного устройства. Так, одна из американских подлодочных автоматически плавающих мин имеет прибор плавания.

Основу этого прибора составляет электродвигатель, вращающий в воде гребной винт, расположенный в нижней части мины (рис. 9).

Работой электродвигателя управляет гидростатический прибор, который действует от; внешнего давления воды и периодически подключает аккумуляторную батарею к электродвигателю.

Если мина опускается на глубину больше той, которая установлена на приборе плавания, то гидростат включает электродвигатель. Последний вращает гребной винт и заставляет мину подвсплывать до заданного углубления. После этого гидростат выключает питание двигателя.


1 - взрыватель; 2 - заряд взрывчатого вещества; 3 - аккумуляторная батарея; 4- гидростат управления электродвигателем; 5 - электродвигатель; 6 - гребной винт прибора плавания

Если же мина будет продолжать всплывать, то гидростат вновь включит электродвигатель, но в этом случае гребной винт будет вращаться в обратную сторону и заставит мину углубиться. Считается, что точность удержания такой мины на заданном углублении может быть достигнута ±1 м.

В послевоенные годы в США на базе одной из электрических торпед была создана самотранспортирующаяся мина, которая после выстреливания движется в заданном направлении, погружается на дно и затем действует как донная мина.

Для борьбы с подводными лодками в США разработаны две самотранспортирующиеся мины. Одна из них, имеющая обозначение "Слим", предназначается для постановки у баз подводных лодок и на путях их предполагаемого движения.

В основу конструкции мины "Слим" положена дальноходная торпеда с различными неконтактными взрывателями.

По другому проекту разработана мина, имеющая название "Кэптор". Она представляет собой комбинацию противолодочной торпеды с минным якорным устройством. Торпеда размещается в специальном герметическом алюминиевом контейнере, который ставится на якорь на глубине до 800 м.

При обнаружении подводной лодки срабатывает прибор мины, откидывается крышка контейнера и запускается двигатель торпеды. Наиболее ответственную часть этой мины составляют приборы обнаружения и классификации целей. Они позволяют отличить подводную лодку от надводного корабля и свою подводную лодку от подводной лодки противника. Приборы реагируют на различные физические поля и дают сигнал на активизацию системы при регистрации не менее двух параметров, например гидродинамического давления и частоты гидроакустического поля.

Считается, что минный интервал (расстояние между соседними минами) для таких мин близок к радиусу реагирования (предельная дальность работы) аппаратуры самонаведения торпеды (~1800 м), что существенно уменьшает их расход в противолодочном заграждении. Предполагаемый срок службы этих мин от двух до пяти лет.

Разработка аналогичных мин производится также военно-морскими силами ФРГ.

Считается, что защита от автоматически плавающих мин весьма затруднительна, так как тралы и охранители кораблей эти мины не вытраливают. Характерной их особенностью является и то, что они снабжаются специальными приборами - ликвидаторами, связанными с часовым механизмом, который устанавливается на заданный срок действия. По истечении этого срока мины тонут или взрываются.

* * *

Говоря об общих направлениях развития современных мин, следует иметь в виду, что последнее десятилетие военно-морские силы стран НАТО особое внимание уделяют созданию мин, служащих для борьбы с подводными лодками.

Отмечается, что мины являются наиболее дешевым и массовым видом оружия, которое с одинаковым успехом может поражать надводные корабли, обычные и атомные подводные лодки.

По типу носителей большинство современных зарубежных мин является универсальными. Они могут ставиться надводными кораблями, подводными лодками и самолетами.

Мины оснащаются контактными, неконтактными (магнитными, акустическими, гидродинамическими) и комбинированными взрывателями. Они рассчитываются на длительный срок службы, снабжаются различными противотральными устройствами, минными ловушками, самоликвидаторами и трудно вытраливаются.

Среди стран НАТО военно-морские силы США располагают наиболее крупными запасами минного оружия. В арсенале минного оружия США имеется большое разнообразие противолодочных мин. Среди них можно отметить корабельную мину Мк.16 с усиленным зарядом и якорную антенную мину Мк.6. Обе мины были разработаны во время второй мировой войны и до настоящего времени находятся на вооружении ВМС США.

К середине 60-х годов в США было принято на вооружение несколько образцов новых неконтактных мин для использования против подводных лодок. К ним относятся авиационные малые и большие донные неконтактные мины (Мк.52, Мк.55 и Мк.56) и якорная неконтактная мина Мк.57, предназначенная для постановки из торпедных аппаратов подводных лодок.

Надо отметить, что в США в основном разрабатываются мины, предназначенные для постановки авиацией и подводными лодками.

Вес заряда авиационных мин - 350-550 кг. При этом вместо тротила их стали снаряжать новыми взрывчатыми веществами, превосходящими мощность тротила в 1,7 раза.

В связи с требованием применения донных мин против подводных лодок глубина места их постановки доведена до 150-200 м.

Серьезным недостатком современного минного оружия зарубежные специалисты считают отсутствие противолодочных мин с большим радиусом действия, глубина постановки которых позволяла бы применять их против современных подводных лодок. При этом отмечается, что одновременно усложнилась конструкция и значительно повысилась стоимость мин.

Германская авиационная донная мина LMB
(Luftmine B (LMB))

(Информация к тайне гибели линкора "Новороссийск")

Предисловие.

29 октября 1955 года в 1 час 30 минут на рейде Севастополя произошел взрыв, в результате которого флагман Черноморского флота линейный корабль "Новороссийск" (бывший итальянский "Giulio Cezare") получил пробоину в носовой части. В 4 часа 15 минут линкор вследствие неостановимого поступления воды в корпус перевернулся и затонул.

Правительственная комиссия, расследовавшая причины гибели линкора, наиболее вероятной причиной назвала взрыв под носовой частью корабля немецкой морской донной неконтактной мины типа LMB или RMH, или же одновременно двух мин той или другой марки.

У большинства исследователей, которые занимались этой проблемой, такая версия причины события вызывает серьезные сомнения. Они полагают, что мина типа LMB или RMH, которая возможно могла лежать на дне бухты (водолазы в 1951-53 годах обнаружили 5 мин типа LMB и 19 мин RMH), не имела достаточной мощности, и ее взрывное устройство к 1955 году не могло привести мину к взрыву.

Однако, противники минной версии, в основном упирают на то, что к 1955 году батареи питания в минах были полностью разряжены и поэтому взрывные устройства не могли сработать.
В общем то, это совершенно верно, но обычно этот тезис для сторонников минной версии недостаточно убедителен, поскольку оппоненты не рассматривают характеристик минных устройств. Некоторые из сторонников минной версии полагают, что по каким то причинам, часовые устройства, имеющиеся в минах, не отработали как положено, а вечером 28 октября, будучи потревоженными, вновь пошли, что и привело к взрыву. Но и они не доказывают свою точку зрения расмотрением устройства мин.

Автор попытается настолько полно, насколько это сегодня возможно, описать конструкцию мины LMB, ее характеристики и способы приведения в действие. Надеюсь, что эта статья внесет хоть немного ясности в выяснение причин этой трагедии.

ПРЕДУПРЕЖДЕНИЕ. Автор не является специалистом в области морских мин, и поэтому к нижеизложенному материалу стоит относиться критически, хотя он и построен на основании служебных источников. Но что делать, коли специалисты в морском минном оружии не спешат познакомить людей с немецкими морскими минами.
Пришлось взяться за это дело сугубому сухопутчику. Если кто либо из морских специалистов сочтет нужным и возможным поправить меня, то я буду искренне рад внести исправления и уточнения в эту статью. Одна просьба - не ссылаться на вторичные источники (художественные произведения, мемуары ветеранов, чьи то байки, оправдания флотских офицеров, причастных к событию). Только служебная литература (инструкции, технические описания, руководства, памятки, служебные справочники, фотографии, схемы).

Германские морские, устанавливаемые с самолетов мины серии LM (Luftmine) являлись наиболее распространенныим и наиболее часто применяемыми из всех донных мин неконтактного действия. Они были представлены пятью различными типами мин, устанавливаемых с самолетов.
Эти типы обозначались как LMA, LMB, LMC, LMD, и LMF.
Все эти мины были минами неконтактного действия, т.е. для их срабатывания не требовалось непосредственного контакта судна с датчиком цели данной мины.

Мины LMA и LMB являлись донными минами, т.е. после сбрасывания ложились на дно.

Мины LMC, LMD и LMF являлись якорными минами, т.е. на дно ложился только якорь мины, а сама мина располагалась на определенной глубине подобно обычным морским минам контактного действия. Однако мины LMC, LMD и LMF размещались на глубине, большей, нежели осадка любого корабля.

Это связано с тем, что донные мины должны устанавливаться на глубинах не превышающих 35 метров, с тем, чтобы взрыв мог причинить кораблю значительные повреждения. Таким образом, значительно ограничивались глубины их применения.

Якорные же мины неконтактного действия могли устанавливаться при тех же глубинах моря, что и обычные контактные якорные мины, имея перед ними то преимущество, что их можно ставить не на заглубление, равное или меньшее чем осадки кораблей, а значительно глубже и тем самым затруднять свое траление.

В Севастопольской бухте из-за ее небольших глубин (в пределах 16-18 метров до слоя ила) применение мин LMC, LMD и LMF было нецелесообразно, а мина LMA, как выяснилось еще в 1939 году, имела недостаточный заряд (вдвое меньше, чем в LMB) и ее производство было прекращено.

Поэтому, для минирования бухты немцами применялись из этой серии только мины LMB. Мин других марок этой серии как в период войны, так и в послевоенное время обнаружено не было.

Мина LMB.

Мина LMB разрабатывалась фирмой Dr.Hell SVK в 1928-1934 годах и была принята на вооружение Люфтваффе в 1938 году.

Существовала в четырех основных моделях- LMB I, LMB II, LMB III и LMB IV.

Мины LMB I, LMB II, LMB III внешне между собой были практически неразличимы и очень похожи на мину LMA, отличаясь от нее большей длиной (298см. против 208см.) и весом заряда (690 кг. против 386кг).

LMB IV была дальнейшим развитием мины LMB III.
Прежде всего, она отличалась тем, что цилиндрическая часть корпуса мины, исключая отсек взрывного устройства, изготавливалась из водостойкой пластифицированной прессованой бумаги (пресс-штофа). Полусферический нос мины изготавливался из бакелитовой мастики. Это диктовалось частично характеристиками экспериментального взрывного устройства "Wellensonde" (AMT 2), и частично нехваткой алюминия.

Кроме того, существовал вариант мины LMB с обозначением LMB/S, который отличался от других вариантов тем, что не имел парашютного отсека, и эта мина устанавливалась с различных плавсредств (корабли, баржи). В остальном она ничем не отличалась.

Однако, в Севастопольской бухте обнаруживались только мины с корпусом из алюминия, т.е. LMB I, LMB II или LMB III, которые отличались друг от друга только мелкими конструктивными особенностями.

В мину LMB могли устанавливаться следующие взрывные устройства:
* магнитное М1 (оно же E-Bik, SE-Bik);
* акустическое А1;
* акустическое А1st;
* магнитно-акустическое МА1;
* магнитно-акустическое МА1a;
* магнитно-акустическое МА2;
* акустическое с низкотональным контуром АТ2;
* магнитно-гидродинамическое DM1;
* акустико-магнитное с низкотональным контуром AMT 1.

Последнее являлось экспериментальным и сведений о его установке в мины не имеется.

Также могли устанавливаться модификации вышеприведенных взрывных устройств:
*M 1r, M 1s - модификации взрывного устройства М1, оснащенные приборами против траления магнитными тралами
* магнитное M 4 (оно же Fab Va);
* акустическое A 4,
* акустическое A 4st;
* магнитно-акустическое MA 1r, снабженное прибором против траления магнитными тралами
* модификация MA 1r под обозначением MA 1ar;
* магнитно-акустическое MA 3;

Основные характеристики мины LMB:

Корпус -алюминий или пресс-штоф
Размеры габаритные: -диаметр 66.04 см.
-длина 298.845см.
Общий вес мины -986.56 кг.
Вес заряд взрывчатого вещества -690.39 кг.
Тип взрывчатого вещества гексонит
Используемые взрывные устройства -М1, М1r, M1s, M4, A1, A1st, A4, A4st, AT1, AT2, MA1, MA1a, Ma1r, MA1ar, MA2, MA3, DM1
Используемые дополнительные устройства -часовой механизм приведения мины в боевое положение типов UES II, UES IIa
-таймерный самоликвидатор типа VW (может не устанавливаться)
-таймерный нейтрализатор типа ZE III (может не устанавливаться)
-устройство необезвреживаемости типа ZUS-40 (может не устанавливаться)
-бомбовый взрыватель типа LHZ us Z(34)B
Способы установки - сбросом с парашютом с самолета
-сбросом с плавсредства (вариант мины LMB/S)
Глубины применения мины - от 7 до 35 метров.
Дистанции обнаружения цели -от 5 до 35 метров
Варианты использования мины - неуправляемая донная мина с магнитным, акустическим, магнитно-акустическим или магнитно-барометрическим датчиком цели,
Время приведения в боевое положение -от 30 мин. до 6 часов через 15 мин. интервалы или
-от 12 час. до 6 суток через 6-часовые интервалы.
Самоликвидаторы:
гидростатический (LiS) - при подъеме мины на глубину менее 5.18м.
таймерный (VW) - по времени от 6 часов до 6 суток с 6-часовыми интервалами или нет
гидростатический (LHZ us Z(34)B) -если мина после сброса не достигла глубины 4.57м.
Самонейтрализатор (ZE III) -через 45-200 суток (мог не устанавливаться)
Прибор кратности (ZK II) - от 0 до 6 кораблей или
- от 0 до 12 кораблей или
- от 1 до 15 кораблей
Защита от вскрытия мины -да
Время боевой работы -определяется исправностью батарей питания. Для мин с акустическими взрывными устройствами от 2 до 14 суток.

Гексонит это смесь гексогена (50%) с нитроглицерином (50%). Мощнее тротила на 38-45%. Отсюда масса заряда в тротиловом эквиваленте составляет 939-1001 кг.

Устройство мины LMB.

Внешне это алюминевый цилиндр с закругленной носовой частью и открытой хвостовой частью.

Конструктивно мина состоит из трех отсеков:

*отсек основного заряда, в котором размещается основной заряд, бомбовый взрыватель LHZusZ(34)B, часы приведения взрывного устройства в боевое положение UES с гидростатическим устройством самоликвидации LiS, гидростатическим механизмом включения промежуточного детонатора и устройством необезвреживаемости бомбового взрывателя ZUS-40..
Снаружи этот отсек имеет бугель для подвески к самолету, три лючка для заполнения отсека взрывчаткой и лючки для UES, бомбового взрывателя и механизма включения промежуточного детонатора.

*отсек взрывного устройства, в котором размещается взрывное устройство, с прибором кратности, таймерным самоликвидатором, таймерным нейтрализатором, устройством необезвреживаемости и устройством защиты от вскрытия.

*парашютный отсек, в котором размещается уложенный парашют. В этот отсек выходят оконечные устройства некоторых взрывных устройств (микрофоны, датчики давления).

UES (Uhrwerkseinschalter). В мине LMB использовались часовые механизмы приведения мины в боевое положение типов UES II или UES IIa.

UES II - это гидростатический часовой механизм, который начинает отсчет времени только если мина окажется на глубине равной 5.18 м. или более. Включается он срабатыванием гидростата, который высвобождает анкерный механизм часов. Следует знать, что часовой механизм UES II продолжит свою работу даже если в это время мину извлечь из воды.
UES IIa аналогичен UES II, но прекращает свою работу если мину извлечь из воды.
Размещается UES II под лючком на боковой поверхности мины с противоложной стороны бугелю подвески на расстоянии 121.02 см. от носа. Диаметр лючка 15.24 см., закреплен стопорным кольцом.

Оба типа UES могли снабжаться гидростатическим устройством неизвлекаемости LiS (Lihtsicherung), которое замыкало батарею питания на электродетонатор и взрывало мину, если ее поднимать и она окажется на глубине меньше, чем 5.18м. При этом LiS могло подсоединяться непосредственно в цепь UES и активизировалось после того, как UES отработает свое время, или же через форконтакт (Vorkontakt), который активизировал LiS через 15-20 минут, после начала работы UES. Посредством LiS обеспечивалась невозможность подъема мины на поверхность после ее сброса с плавсредства.

Часовой механизм UES можно предварительно установить на требуемое время приведения мины в боевое положение в пределах от 30 минут до 6 часов через 15-минутные интервалы. Т.е. мина приведется в боевое положение после сброса через 30 минут, 45 мин, 60 мин., 75 мин.,......6 часов.
Второй вариант работы UES - часовой механизм можно предварительно установить на время приведения мины в боевое положение в пределах от 12 часов до 6 суток через 6-часовые интервалы. Т.е. мина приведется в боевое положение после сброса через 12 часов, 18 час, 24 час,......6 суток. Проще говоря, при попадании мины в воду на глубину 5.18м. или глубже сначала отработает свое время задержки UES и лишь затем начнется процесс настройки взрывного устройства Собственно, UES это предохранительное устройство, позволяющее своим кораблям безопасно перемещаться вблизи мины определенное, известное им время. Например, при продолжающихся работах по минированию акватории.

Бомбовый взрыватель (Bombenzuender) LMZ us Z(34)B. Его основная задача заключается в том, чтобы взорвать мину, если она не достигнет глубины 4.57.м. до истечения 19 секунд с момента касания поверхности.
Взрыватель располагается на боковой поверхности мины на 90 градусов от бугеля подвески на 124.6 см. от носа. Лючок диаметром 7.62см. закреплен стопорным кольцом.
В конструкции взрывателя имеется таймерный механизм часового типа, который расстопаривает инерционный грузик через 7 секунд после того, как из взрывателя извлечена предохранительная чека (чека соединена тонкой проволокой со сбрасывающим устройством самолета). После касания мины поверхности земли или воды движение инерционного грузика запускает таймерный механизм, который через 19 секунд вызывает срабатывание взрывателя и взрыв мины, если имеющийся во взрывателе гидростат, до этого момента не застопорит таймерный механизм. А гидростат сработает, только если мина к этому моменту достигнет глубины не меньше 4.57 метра.
По сути дела этот взрыватель является самоликвидатором мины на тот случай, если она упала на землю и на мелководье и может быть обнаружена противником.

Устройство необезвреживаемости (Ausbausperre) ZUS-40. Под взрывателем может располагаться устройство необезвреживаемости ZUS-40. Оно предназначено для того, чтобы водолаз противника не смог извлечь взрыватель LMZusZ(34)B, и тем самым сделать возможным подъем мины на поверхность.
Это устройство состоит из подпружиненного ударника, который высвобождается, если попытаться извлечь из мины взрыватель LMZ us Z(34)B.

Устройство имеет ударник 1, стремящийся под влиянием пружины 6 продвинуться вправо и наколоть капсюль-воспламенитель 3. Продвижению ударника мешает стопор 4, опирающийся снизу на стальной шарик 5. Устройство необезвреживаемости помещается в боковом запальном стакане мины под взрывателем, детонатор которого входит в гнездо устройства неизвлекаемости. Ударник подается влево, вследствие чего контакт между ним и стопором нарушается При ударе мины о воду или грунт шарик вылетает из своего гнезда, и стопор под действием пружины 2 опускается вниз, освобождая путь ударнику, который теперь удерживается от накола капсюля только детонатором взрывателя. При извлечении взрывателя из мины более чем на 1.52 см. детонатор выходит из гнезда ликвидатора и окончательно освобождает ударник, который накалывает капсюль-детонатор, взрыв которого взрывает специальный детонатор, а от него взрывается основной заряд мины.

От автора. Вообще то ZUS-40 это стандартное устройство необезвреживаемости, применявшееся в немецких авиабомбах. Им могли быть снабжены большинство фугасных и осколочных бомб. Причем, ZUS устанавливался под взрыватель и бомба, снабженная им ничем не отличалась от той, которая таковым не снабжена. Точно также это устройство могло иметься в мине LMB или не иметься. В Севастополе несколько лет назад была обнаружена мина LMB и при попытке ее разборки от взрыва механического защитника взрывного устройства (GE) погибли двое доморощенных деминеров. Но там сработал только специальный килограммовый заряд, который предназначен именно для укорачивания излишнего любопытства. Если бы они стали вывинчивать бомбовый взрыватель, то избавили бы своих родных от необходимости их хоронить. Взрыв 700 кг. гексонита просто превратил бы их в пыль.

Обращаю внимание всех любителей поковыряться во взрывоопасных остатках войны на то, что да, большинство немецких бомбовых взрывателей конденсаторного типа и ныне уже неопасны. Но имейте в виду, что под любым из них может оказаться ZUS-40. А эта штука механичская и может ждать свою жертву неопределенно долго.

Включатель промежуточного детонатора. Размещен на противоволожной стороне от бомбового взрывателя на расстоянии 111.7см. от носа. Имеет лючок диаметром 10.16 см., закрепленный стопорным кольцом. Головка его гидростата вызодит на поверхность боковой стороны мины рядом с бомбовым взрывателем. Гидростат стопорится второй предохранительной чекой, которая тонкой проволочкой соединена со сбрасывающим устройством самолета. Основная задача включателя промежуточного детонатора состоит в предохранении от взрыва мины при случайном срабатывании взрывного механизма до того, как мина окажется на глубине.. При нахождении мины на суше, в воздух гидростат не позволяет промежуточному детонатору соединиться с электродетонатором (а послед)ний проводами соединен со взрывным устройством) и при случайном срабатывании взрывного устрйоства взорвется только электродетонатор. Когда мина сброшена, то одноврменно с предохранительной чекой бомбового взрывателя вытаскивается и предохранительная чека включателя промежцуточного детонатора. По достижении глубины 4.57 метра гидростат позволит промежуточному детонатору соединиться с электродетонатором.

Таким образом, после отделения мины от самолета, с помощью натяжных проволок извлекаются предохранительные чеки бомбового взрывателя и включателя промежуточного детонатора, а также вытяжная шпилька парашюта. Колпак парашюта сбрасывается, парашют раскрывается и мина начинает снижаться. В этот момент (7 секунд после отделения от самолета) таймер бомбового взрывателя расстопаривает свой инерционный грузик.
В момент касания мины поверхности земли или воды инерционный грузик вследствие удара о поверхность запускает таймер бомбового взрывателя.

Если через 19 секунд мина не окажется глубже, чем 4.57 метра, то бомбовой взрыватель взрывает мину.

Если мина до истечения 19 секунд достигла глубины 4.57м., то таймер бомбового взрывателя стопорится и в дальнейшем взрыватель в работе мины участия не принимает.

По достижении миной глубины 4.57м. гидростат включателя промежуточного детонатора посылает промежуточный детонатор в соединение с электродетонатором.

По достижении миной глубины 5.18м. гидростат UES запускает свой часовой механизм в работу и начинается отсчет времени до приведения взрывного устройства в боевое положение.

При этом через 15-20 минут с момента начала работы часов UES может включиться устройство неизвлекаемости LiS, которое взорвет мину, если ее поднять на глубину меньше, чем 5.18м. Но в зависимости от заводских предустановок, включение LiS может производиться не через 15-20 минут после запуска UES, а только после отработки UES своего времени.

Через заданное время UES замкнет взрывную цепь на взрывное устройство, которое начнет процесс приведения себя в боевое положение.

После того, как основное взрывное устройство привело себя в боевое положение мина оказывается в положении боевого дежурства, т.е. в ожидании корабля-цели.

Воздействие вражеского корабля на чувствительные элементы мины приводит к ее взрыву.

Если мина оснащена таймерным нейтрализатором, то в зависимости от установленного времени в пределах от 45 до 200 суток он отделит источник питания от электросхемы мины и миана станет безопасной.

Если мина снабжена самоликвидатором, то, в зависимости от установленного времени в пределах до 6 суток он замкнет батарею питания на электродетонатор и мина взорвется.

Мина может быть снабжена устройством защиты взрывного устройства от вскрытия. Это механически приводимый в действие взрыватель разгрузочного действия, который при попытке вскрыть отсек взрывного устройства взорвет килограммовый заряд взрывчатки, который разрушит взрывное устройство, но не приведет к взрыву всей мины.

Рассмотрим взрывные устройства, которые могли устанавливаться в мину LMB. Все они устанавливались в отсек взрывного устройства на заводе. Сразу заметим, что различить какое именно устройство установлено в данную мину возможно лишь по маркировке на корпусе мины.

Магнитное взрывное устройство M1 (оно же E-Bik и SE-Bik) . Это магнитное неконтактное взрывное устройство, которое реагирует на изменения вертикального компонента магнитного поля Земли. В зависимости от заводских настроек оно может реагировать на изменения северного направления (магнитные силовые линии идут от северного полюса к южному), на изменения южного направления или же на изменения той и другой направленности.

От Ю.Мартыненко. В зависимости от места постройки корабля, точнее, от того, как по странам света был ориентирован стапель, корабль навсегда приобретает определеную направленность своего магнитного поля. Может статься, что один корабль может безопасно проходить над миной множество раз, другой же подорвется.

Разработано фирмой Hartmann & Braun SVK в 1923-25 гг. Питается М1 от батареи типа EKT рабочим напряжением 15 вольт. Чувствительность прибора ранних серий составляло 20-30 mOe. Позднее она была увеличена до 10 mOe, а последнии серии имели чувствительность 5 mOe. Проще говоря, М1 обнаруживает корабль на расстояниях от 5 до 35 метров. После того, как UES отработало заданное время, оно подает питание на М1, в котором начинается процесс настройки на то магнитное поле, которое имеется в данном месте на момент начала работы A.L.A (прибора, встроенного в М1 и предназначенного для определения характеристик магнитного поля и принятия их за нулевое значение).
Взрывное устройство М1 в своей схеме имело вибрационный датчик (Pendelkontakt), который блокировал работу взрывной цепи при воздействии на мину возмущающих влияний немагнитного характера (удары, толчки, перекатывания, ударные волны подводных взрывов, сильные вибрации от слишком близко работающих механизмов и корабельных винтов). Этим обеспечивалась устойчивость мины ко многим тральным мероприятиям противника, в частности к тралению с помощью бомбометания, протягивания по дну якорей и тросов.
Взрывное устройство М1 оснащалось часовым пружинным механизмом VK, который при сборке мины на заводе мог устанавливаться на отработку интервалов времени от 5 до 38 секунд. Он предназначался для воспрепятствования сработке взрывного устройства, если магнитное воздействие проходящего над миной корабля прекращалось ранее заданного отрезка времени. Когда взрывное устройство М1 мины реагирует на цель, оно заставляет соленоид часов сработать, таким образом запуская секундомер. Если магнитное воздействие присутствует в конце заданного времени секундомер замкнет взрывную сеть и приведет мину в действие. Если мина не будет взорвана приблизительно после 80 срабатываний VK, то он выключается из работы.
С помощью VK достигалась нечувствительность мины к малоразмерным быстроходным кораблям (торпедные катера и т.п.), магнитным тралам, установленным на самолетах.
Также внутри взрывного устройства находился и был включен в электроцепь взрывного устройства прибор кратности (Zahl Kontakt (ZK)), который обеспечивал взрыв мины не под первым, проходящим над миной кораблем, а под определенным по счету.
Во взрывном устройстве М1 использовались приборы кратности типов ZK I, ZK II, ZK IIa и ZK IIf.
Все они приводятся в действие пружинным приводом часового типа, анкеры которых управляются электромагнитами. Однако, мина должна быть приведена в боевое положение прежде, чем электромагнит, управляющий анкером, может начать действовать. Т.е. должна быть закончена программа приведения в боевое положение взрывного устройства М1. Взрыв мины мог произойти под кораблем только после того, как прибор кратности отсчитал заданное количество проходов кораблей.
ZK I являлся шестишаговым механическим счетчиком. Учитывал импульсы срабатывания длительностью 40 секунд и более.
Проще говоря, его можно было настроить на проход от 0 до 6 кораблей. При этом изменение магнитного поля должно было продолжаться 40 секунд или более. Этим самым исключался отсчет быстроходных целей типа торпедных катеров или самолетов с магнитными тралами.
ZK II - являлся двенадцатишаговым механическим счетчиком. Он учитывал импульсы срабатывания длительностью 2 минуты и более.
ZK IIa был аналогичен ZK II, за исключением того, учитывал импульсы срабатывания длительностью не 2, а 4 минуты и более.
ZK IIf был аналогичен ZK II, за исключением того, что временной интервал был уменьшен с двух минут до пяти секунд.
В электросхеме взрывного устройства М1 имелся так называемый маятниковый контакт (по сути дела вибрационный датчик), который блокировал работу устройства при любых механических воздействиях на мину (перемещение, перекатывание, толчки, удары, взрывные волны и т.п), что обеспечивало устойчивость мины к несанкционированным влияниям. Проще говоря, он обеспечивал срабатывание взрывного устройства только при изменении магнитного поля проходящим кораблем.

Взрывное устройство М1, будучи приведенным в боевое положение, срабатывало при нарастании или уменьшении вертикальной компоненты магнитного поля заданной длительности, причем взрыв мог произойти под первым, вторым,...,двенадцатым кораблем в зависимости от предустановок ZK..

Как и все другие магнитные взрывные устройства М1 в отсеке взрывного устройства размещался в кардановом подвесе, который обеспечивал строго определенное положение магнитометра вне зависимости от того, в каком положении мина лежит на дне.

Варианты взрывного устройства М1, имевшие обозначения M1r и M1s имели в своей электросхеме схеме дополнительные цепи, обеспечивающие повышенную стойкость взрывного устройства к магнитным противоминным тралам.

Производство всех вариантов М1 было прекращено в 1940 году из-за неудовлетворительных характеристик и повышенного расхода электроэнергии батареи питания.

Комбинированное взрывное устройство DM1 . Представляет собой магнитное взрывное устройство М1
, в которое добавлен контур с гидродинамическим датчиком, реагирующим на снижение давления. Разработано фирмой Hasag SVK в 1942 году, однако изготовление и установка в мины началась лишь к июню 1944 года. Впервые мины с DM1 стали устанавливаться в проливе Ла Манш в июне 1944 года. Поскольку Севастополь был освобожден в мае 1944, то применение DM1 в минах, устанавливавшихся в Севастопольской бухте исключается.

Срабатывает, если в пределах от 15 до 40 сек. после того, как М1 зарегистрировал корабль-цель (магнитная чувствительность: 5 mOe) давление воды понижается на 15-25 мм. водяного столба и сохраняется 8 секунд. Либо наоборот, если датчик давления регистрирует снижение давление на 15-25 мм. водяного столба в течение 8 секунд и в это время магнитный контур зарегистрирует появление корабля-цели.

В схеме имеется гидростатическое устройство самоликвидации (LiS), которе замыкает взрывную цепь мины, если последнюю поднять на глубину менее 4.57 метра.

Датчик давления своим корпусом выходил в парашютный отсек и размещался между резонаторными трубами, которые использовались только во взрывном устройстве AT2, но в общем то являлись частью стенки отсека взрывного устрйоства. источник питания единый для магнитного и барометрического контуров- батарея типа EKT рабочим напряжением 15 вольт.

Магнитное взрывное устройство M4 (оно же Fab Va) . Это неконтактное магнитное взрывное устройство, которое реагирует на изменения вертикального компонента магнитного поля Земли, как северного, так и южного направления. Разработано фирмой Eumig в Вене в 1944 году. Изготавливалось и устанавливалось в мины в очень ограниченных количествах.
Питается от батареи напряжением 9 вольт. Чувствительность очень высокая 2.5 mOe. В работу запускается как и М1 через вооружающие часы UES. Автоматически настраивается на уровень магнитного поля, имеющееся в точке сброса мины на момент окончания работы UES.
В своей схеме имеет цепь, которую можно полагать 15-шаговым прибором кратности, которую перед установкой мины можно настраивать на проход от 1 до 15 кораблей.
Никаких дополнительных устрйств, обеспечивающих неизвлекаемость, необезвреживаемость, периодическое прерывание работы, противотральные свойства в М4 не встраивалось.
Также, не имелось устройств, определяющих продолжительность изменения магнитного влияния. М4 срабатывало немедленно при обнаружении изменения магнитного поля.
Вместе с тем, М4 имело высокую стойкость к ударным волнам подводных взрывов за счет совершенной конструкции магнитометра нечувствительного к механическим воздействиям.
Надежно ликвидируется магнитными тралами всех типов.

Как и все другие магнитные взрывные устройства М4 размещается внутри отсека на кардановом подвесе, который обеспечивает правильное положение вне зависимости от положения, которое занимает мина при падении на дно. Правильное, т.е. строго вертикальное. Это диктуется тем, что силовые магнитные линии должны входить во взрывное устройство либо сверху (северное направление,), либо снизу (южное направление). При ином положении взрывное устройство не сможет даже правильно настроиться, не говоря уж о правильном реагировании.

От автора. Очевидно существование такого взрывного устройства диктовалось сложностями промышленного производства и резким ослаблением сырьевой базы конечного периода войны. Немцам в это время требовалось произвести как можно больше наиболее простых и дешевых взрывных устройств даже и в пренебрежении их противотральными свойствами.

Вряд ли в севастопольской бухте могли ставиться мины LMB со взрывным устройством М4. А если и ставились, то наверняка все они были уничтожены противоминными тралами еще в период войны.

Акустическое взрывное устройство А1 корабля. Взрывное устройство A1 начало разрабатываться с мая 1940 фирмой Dr.Hell SVK и в середине мая 1940 был представлен первый образец. Было принято на вооружение в сентябре 1940.

Устройство реагировало на нарастающий до определенной величины шум винтов корабля частотой 200 герц, длящийся более 3-3.5 секунд.
Оснащалось прибором кратности (Zahl Kontakt (ZK)) типа ZK II, ZK IIa, ZK IIf. Более подробная информация об ZK имеется в описании взрывного устройства M1.

Кроме того, взрывное устройство А1 было оснащено устройством защиты от вскрытия (Geheimhaltereinrichtung (GE) оно же Oefnungsschutz)

GE состояло из плунжерного переключателя, который держал свою цепь в разомкнутом состоянии когда крышка отсека взрывного устройства, была закрыта. Если попытаться снять крышку, пружинный плунжер высвобождается в процессе снятия и замыкает цепь от главной батареи взрывного устройства к специальному детонатору, взрывая маленький 900-граммовый заряд ВВ, который уничтожает взрывное устройство, но не взрывает основной заряд мины. GE приводится в боевое положение до установки мины, вставлением предохранительной шпильки, которая замыкает цепь GE. Эта шпилька вставляется в корпус мины через отверстие, находящееся на 135° от верха мины в 15.24см. от бортика хвостового лючка. Если GE установлено в корпусе, это отверстие будет присутствовать на корпусе, хотя оно будет зашпаклевано и закрашено, чтобы не быть видным.

Взрывное устройство А1 имело три батареи питания. Первая это 9-вольтовая батарея микрофона, 15-вольтовая блокирующая батарея и 9-вольтовая запальная батарея.

Электросхема А1 обеспечивала ее несрабатывание не только от коротких звуков (короче 3-3.5 секунд), но и от слишком сильных звуков, например, от ударной волны взрывов глубинных бомб.

Вариант взрывного устройства под обозначением A1st имел пониженную чувствительность микрофона, что обеспечивало несрабатывание от шума акустических минных тралов и шума винтов малоразмерных судов.

Время боевой работы взрывного устройства А1 с момента его включения от 50 часов до 14 суток, после чего батарея питания микрофона выходит из строя вследствие израсходования своей емкости.

От автора. Хотелось бы обратить внимание читателей на то, что батарея микрофона и блокирующая батарея находятся постоянно в работе. Под водой нет абсолютной тишины, особенно в гаванях и портах. Микрофон передает на трансформатор в виде переменного электротока все звуки им получаемые, а блокирующая батарея через свою схему блокирует все сигналы, не отвечающие заданным параметрам. Рабочий ток колеблется от 10 до 500 милиампер.

Акустическое взрывное устройство А4 . Это акустическое взрывное устройство, реагирующее на шум винтов проходящего корабля. Начало разрабатываться в 1944 году фирмой Dr.Hell SVK и в конце года был представлен первый образец.. Было принято на вооружение и начало устанавливаться в мины в начале 1945.

Следовательно, встретить А4 в минах LMB. установленных в Севастопольской бухте, невозможно.

Устройство реагировало на нарастающий до определенной величины шум винтов корабля частотой 200 герц, длящийся более 4-8 секунд.

Оснащалось прибором кратности типа ZK IIb, который мог устанавливаться на прохождение кораблей от 0 до 12. Имело защиту от шума подводных взрывов за счет того, что реле устройства срабатывали с замедлением, а шум взрыва обрывистый. Имело защиту от имитаторов шума винтов, устанавливаемых в носовой части корабля за счет того, что шум винтов должен был равномерно нарастать в течение 4-8 секунд, а шум винтов, исходящих одновременно из двух точек (шум настоящих винтов и шум имитатора) давал неравномерное нарастание.

В устройстве устанавливалось три батареи. Первая для питания схемы напряжением 9 вольт, вторая для питания микрофона напряжением 4.5 вольт и третья блокирующая схему напряжением 1.5 вольт. Ток покоя микрофона достигал 30-50 милиампер.

От автора. Хотелось бы и здесь обратить внимание читателей на то, что батарея микрофона и блокирующая батарея находятся постоянно в работе. Под водой нет абсолютной тишины, особенно в гаванях и портах. Микрофон передает на трансформатор в виде переменного электротока все звуки им получаемые, а блокирующая батарея через свою схему блокирует все сигналы, не отвечающие заданным параметрам.

Взрывное устройство A4st отличалось от А4 только пониженной чувствительностью к шумам. Этим обеспечивалось несрабатывание мины под малозначительными целями (небольшие малошумные суда).

Акустическое взрывное устройство с низкочастотным контуром АT2 . Это акустическое взрывное устройство, имеющее два акустических контура. Первый акустический контур реагирует на шум винтов корабля частой 200 герц похоже, как взрывное устройство А1. Однако, срабатывание этого контура приводило к включению второго акустического контура, который реагировал только на звуки низкой частоты (около 25 герц), исходящие строго сверху. Если низкочастотный контур регистрировал шумы низкой частоты более 2 секунд, то он замыкал взрывную цепь и происходил взрыв.

АТ2 разрабатывалось с 1942 фирмами Elac SVK и Eumig. Начало использоваться в минах LMB в 1943 году.

От автора. Служебные источники не поясняют для чего требовался второй низкочастотный контур. Автор предполагает, что таким образом выявлялся достаточно крупный корабль, который в отличие от небольших посылал в воду достаточно сильные шумы низкой частоты от мощных тяжелых корабельных двигателей.

Для того, чтобы уловить низкочастотные шумы, взрывное устройство оснащалось резонаторными трубами, внешне похожими на оперение авиационных бомб.
На фотографии показана хвостовая часть мины LMB с выходящими в парашютный отсек резонаторными трубами взрывного устройства АТ1. Кожух парашютного отсека снят, чтобы бы было видно АТ1 с его резонаторными трубами.

Устройство имело четыре батареи питания. Первая для питания микрофона первого контура напряжением 4.5 вольт и электородетонатора, вторая напряжением 1.5 вольт для управления трансформатором низкочастотного контура, третья 13.5 вольт для цепи накала трех усилительных радиоламп, четвертая 96 анодная на 96 вольт для питания радиоламп.

Никакими дополнительными устройствами типа приборов кратности (ZK), устройств неизвлекаемости (LiS), устройств защиты от вскрытия (GE) и прочими не оснащалось. Срабатывало под первым проходящим кораблем.

Американский справочник по немецким морским минам OP1673A отмечает, что мины с этими взрывными устройствами имели тенденцию к самопроизвольному срабатыванию, если оказывались в зонах донных течений или во время сильных штормов. Вследствие постоянной работы микрофона контура нормальных шумов (под водой на этих глубинах довольно шумно) время боевой работы взрывного устройства AT2 составляло всего 50 часов.

От автора. Возможно, что именно эти обстоятельства предопределили, что из очень небольшого количества образцов немецких морских мин времен Второй Мировой войны, хранящихся ныне в музеях, мина LMB/AT 2 есть во многих. Правда, стоит помнить, что мина LMB сама по себе могла быть оснащена устройством неизвлекаемости LiS и устройством необезвреживаемости ZUS-40 под бомбовым взрывателем LHZusZ(34)B. Могла, но очевидно довольно много мин этими штуками не были оснащены.

В случае воздействия на микрофон ударной волны подводного взрыва, которая характеризуется очень быстрым возрастанием и небольшой продолжительностью, на мгновенно возрастающий ток в цепи реагировало специальное реле, которое блокировало взрывную цепь на время прохождения взрывной волны.

Магнитно-акустическое взрывное устройство MА1 .
Это взрывное устройство было разработано фирмой Dr.Hell CVK в 1941 году, и в этом же году поступило на вооружение. Срабатывание магнитно-акустическое.

После сбрасывания мины п происходит процесс отработки времени задержки часами UES и настройки на магнитное поле, существующее в данном месте совершенно аналогично как во взрывном устройстве М1. Собственно, МА1 это взрывное устройство М1, с добавлением в него акустического контура. Процесс включения и настройки указан в описании включения и настройки взрывного устройства М1.

При обнаружении корабля по изменению магнитного поля прибор кратности ZK IIe отсчитывает один проход. Акустическая система в это время в работе взрывного устройства участия не принимает. И только после того как прибор кратности отсчитает 11 проходов и зарегистрирует 12-й корабль, к работе подключается акустическая система.

Теперь, если в течение 30-60 секунд после магнитного обнаружения цели акустическая ступень зарегистрирует шум винтов, продолжающийся несколько секунд, ее низкочастотный фильтр отфильтрует частоты больше 200 герц и включится в работу усилительная лампа, которая подаст ток на электродетонатор. Взрыв.
Если же акустическая система не зарегистрирует шум винтов, или он окажется слишком слабым, то биметаллический термоконтакт размокнет цепь и взрывное устройство вернется в положение ожидания.

Вместо прибора кратности ZK IIe в цепь взрывного устройства могут встраиваться прерывающие часы (Pausernuhr (PU)). Это 15-дневные электрически управляемые включающие- выключающие часы, созданные, чтобы приводить мину в боевое и безопасное положение в 24-часовых циклах. Установки выполняются в интервалах, кратных 3 часам, например, 3 часа включена, 21 час выключена, 6 часов включена, 18 часов выключена и т.д. Если в течение 15 дней мина не сработала, то эти часы выводятся из цепи и срабатывание мины произойдет при первом же проходе корабля.

Помимо гидростатического устройства неизвлекаемости (LiS), встроенного в часы UES, данное взрывное устройство оснащается собственным гидростатическим LiS, которое питается от собственной 9-вольтовой батареи. Таким образом, мина, оснащенная данным взрывным устройством способна взорваться при подъеме на глубину меньше, чем 5.18 метров от одного из двух LiS.

От автора. Усилительная лампа потребляет значительный ток. Специально для нее во взрывном устройстве имеется 160-вольтовая анодная батарея. Вторая 15-вольтовая батарея питает как магнитный контур, так и микрофон, и прибор кратности или прерывающие часы PU (если установлены взамен ZK). Вряд ли, батареи, находящиеся постоянно в работе, сохранят свой потенциал в течение 11 лет.

Вариант взрывного устройства MA1 под наименованием MA1r имел в своем составе медный наружный кабель длиной около 50 метров, в котором наводился электрический потенциал под воздействием магнитного линейного трала. Этот потенциал блокировал работу схемы. Таким образом МА1r имел повышенную устойчивость к действию магнитных тралов.

Вариант взрывного устройства MA1 под наименованием MA1a имел несколько иные характеристики, которые обеспечивали блокирование взрывной цепи, если обнаруживалось снижение уровня шума, а не ровный шум или его повышение.

Вариант взрывного устройства MA1 под наименованием MA1ar объединял в себе особенности МА1r и MA1a.

Магнитно-акустическое взрывное устройство MА2 .

Это взрывное устройство было разработано фирмой Dr.Hell CVK в 1942 году, и в этом же году поступило на вооружение. Срабатывание магнитно-акустическое.

После сбрасывания мины происходит процесс отработки времени задержки часами UES и настройки на магнитное поле, существующее в данном месте совершенно аналогично как во взрывном устройстве М1. Собственно, магнитный контур взрывного устройства МА2 заимствован из взрывного устройства М1.

При обнаружении корабля по изменению магнитного поля прибор кратности ZK IIe отсчитывает один проход. Акустическая система в это время в работе взрывного устройства участия не принимает. И только после того как прибор кратности отсчитает 11 проходов и зарегистрирует 12-й корабль, к работе подключается акустическая система. Впрочем, он может быть настроен на любое количество проходов от 1 до 12.
В отличие от MA1 здесь после срабатывания магнитного контура в момент приближения двенадцатого корабля-цели происходит настраивание акустического контура на уровень шумов, имеющийся на данный момент, после чего акустический контур выдаст команду на подрыв мины только если уровень шума поднялся до определенного уровня за 30 секунд. Схема взрывного устройства блокирует взрывную цепь, если уровень шума превышает заданный уровень, а затем начинает снижаться. Этим достигалась устойчивость мины к тралению магнитными тралами, буксируемыми за судном-тральщиком.
Т.е. сначала магнитный контур регистрирует изменение магнитного поля и включает акустический контур. Последний регистрирует не просто шум, а нарастающий шум от тихого до порогового значения и выдает команду на взрыв. А если мина встретила, не корабль-цель, а тральщик, то поскольку тральщик идет впереди магнитного трала, в момент включения акустического контура шум его винтов чрезмерен, а затем начинает спадать.

От автора. Вот таким довольно простым способом без всяких компьютеров магнитно-акустическое взрывное устройство определяло, что источник искажения магнитного поля и источник шума винтов не совпадают, т.е. движется не корабль-цель, а тральщик, тянущий за собой магнитный трал. Естественно, что тральщики, занимавшиеся этим делом, сами были немагнитными, чтобы не подорваться на мине. Встраивание в магнитный трал имитатора шума винтов ничего здесь не дает, т.к. происходит наложение шума винтов тральщика на шумы имитатора и нормальная звуковая картина искажается.

Взрывное устройство МА2 в своей схеме имело вибрационный датчик (Pendelkontakt), который блокировал работу взрывной цепи при воздействии на мину возмущающих влияний немагнитного характера (удары, толчки, перекатывания, ударные волны подводных взрывов, сильные вибрации от слишком близко работающих механизмов и корабельных винтов). Этим обеспечивалась устойчивость мины ко многим тральным мероприятиям противника, в частности к тралению с помощью бомбометания, протягивания по дну якорей и тросов.
Устройство имело две батареи. Одна из них напряжением 15 вольт питала магнитный контур, да и всю электровзрывную цепь. Вторая батарея анодная на 96 вольт питала три усилительные радиолампы акустического контура

Помимо гидростатического устройства неизвлекаемости (LiS), встроенного в часы UES, данное взрывное устройство оснащается собственным гидростатическим LiS, которое питается от основной 15-вольтовой батареи. Таким образом, мина, оснащенная данным взрывным устройством способна взорваться при подъеме на глубину меньше, чем 5.18 метров от одного из двух LiS.

Взрывное устройство МА 3 отличалось от МА 2 только тем, что его акустический контур был настроен не на 20, а на 15 секунд.

Акустико-магнитное взрывное устройство с низкотональтным контуром AMT 1. Должно было устанавливаться в мины LMB IV, однако к моменту окончания войны это взрывное устройство находилось в стадии экспериментирования. Применение этого взрыв}