Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 5806

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена , так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД .
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК .

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2
Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.
Пример: определить, делится ли на 2 число 34938 .
Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3
Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.
Пример: определить, делится ли число 34938 на 3.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5
Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.
Пример: определить, делится ли число 34938 на 5.
Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9
Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.
Пример: определить, делится ли число 34938 на 9.
Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36) :

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7 , 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252 .

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c) .

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3 , 32 = 1·2·2·2·2·2 , 36 = 1·2·2·3·3 .
  2. Найдём обшие множители: 1, 2 и 2 .
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96 .
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , НОД = 1·2·2·3 = 12 .
  6. НОК(12, 32, 36) = 96·36 / 12 = 288 .

Решим задачу. У нас есть два типа печенья. Одни шоколадные, а другие простые. Шоколадных 48 штук, а простых 36. Необходимо составить из этого печенья максимально возможное число подарков, при этом надо использовать их все.

Для начала выпишем все делители каждого из этих двух чисел, так как оба эти числа должны делиться на количество подарков.

Получаем,

  • 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
  • 36: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Найдем среди делителей общие, которые есть как у первого, так и у второго числа.

Общими делителями будут: 1, 2, 3, 4, 6, 12.

Наибольшим из всех общих делителей является число 12. Это число называют наибольшим общим делителем чисел 36 и 48.

Исходя из полученного результата, можем заключить, что из всего печенья можно составить 12 подарков. В одном таком подарке будет 4 шоколадных печенья и 3 обычных печенья.

Определение наибольшего общего делителя

  • Наибольшее натуральное число, на которое делятся без остатка два числа a и b, называют наибольшим общим делителем этих чисел.

Иногда для сокращения записи используют аббревиатуру НОД.

Некоторые пары чисел имеют в качестве наибольшего общего делителя единицу. Такие числа называют взаимно простыми числами. Например, числа 24 и 35. Имеют НОД =1.

Как найти наибольший общий делитель

Для того чтобы найти наибольший общий делитель не обязательно выписывать все делители данных чисел.

Можно поступить иначе. Сначала разложить на простые множители оба числа.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Теперь из множителей, которые входят в разложение первого числа, вычеркнем все те, которые не входят в разложение второго числа. В нашем случае это две двойки.

  • 48 = 2*2*2*2*3 ,
  • 36 = 2*2*3 *3.

Останутся множители 2, 2 и 3. Их произведение равно 12. Это число и будет являться наибольшим общим делителем чисел 48 и 36.

Это правило можно распространить на случай с тремя, четырьмя и т.д. числами.

Общая схема нахождения наибольшего общего делителя

  • 1. Разложить числа на простые множители.
  • 2. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел.
  • 3. Посчитать произведение оставшихся множителей.

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …,НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ;60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида:570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , тоd 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть,НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 ,294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

К началу страницы

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Пример.

Найдите НОД отрицательных целых чисел −231 и −140 .

Решение.

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , иНОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства:231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно,НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел−231 и −140 равен 7 .


Ответ:

НОД(−231, −140)=7 .

Пример.

Определите НОД трех чисел −585 , 81 и −189 .

Решение.

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно,НОД(−585, 81, −189)=9 .

Ответ:

НОД(−585, 81, −189)=9 .

35. Корені многочлена. Теорема Безу. (33 и выше)

36. Кратні корені, критерій кратності кореня.