Среда обитания – это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном, меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Среди них выделяют абиотические и биотические, антропогенные.

Абиотические факторы – температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности – это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы – это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов – растениями, животными, микроорганизмами, зависит от них и сам оказывает на них воздействие. Окружающий органический мир – составная часть среды каждого живого существа.

Взаимные связи организмов – основа существования биоценозов и популяций; рассмотрение их относится к области син-экологии.

Антропогенные факторы – это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. В ходе истории человечества развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете следует выделять в особую силу, не укладывающуюся в рамки этой классификации. В настоящее время практически судьба живого покрова Земли, всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываются в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. п.

Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток, или сезоном года, или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например, изменения погодных условий в разные годы, явления катастрофического характера – бури, ливни, обвалы и т. п.; 3) направленными на протяжении известных, иногда длительных, отрезков времени, например, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. п.

Среди факторов среды выделяют ресурсы и условия. Ресурсы окружающей среды организмы используют, потребляют, тем самым уменьшая их количество. К ресурсам относят пищу, воду при ее дефиците, убежища, удобные места для размножения и т. п. Условия – это такие факторы, к которым организмы вынуждены приспосабливаться, но повлиять на них обычно не могут. Один и тот же фактор среды может быть ресурсом для одних и условием для других видов. Например, свет – жизненно необходимый энергетический ресурс для растений, а для обладающих зрением животных – условие зрительной ориентации. Вода для многих организмов может быть и условием жизни, и ресурсом.

2.2. Адаптации организмов

Приспособления организмов к среде носят название адаптации. Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание.

Способность к адаптациям – одно из основных свойств жизни вообще, так как обеспечивает и саму возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и развиваются в ходе эволюции видов.

Основные механизмы адаптации на уровне организма: 1) биохимические – проявляются во внутриклеточных процессах, как, например, смена работы ферментов или изменение их количества; 2) физиологические – например, усиление потоотделения при повышении температуры у ряда видов; 3) морфо-анатомические – особенности строения и формы тела, связанные с образом жизни; 4) поведенческие – например, поиск животными благоприятных мест обитания, создание нор, гнезд и т. п.; 5) онтогенетические – ускорение или замедление индивидуального развития, способствующие выживанию при изменении условий.

Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие морфологические и анатомические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

2.3. Общие законы действия факторов среды на организмы

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


Рис. 1. Схема действия факторов среды на живые организмы


Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до +29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды – выносящие значительные колебания температуры, эврибатные – широкий диапазон давления, эвригалинные – разную степень засоления среды.




Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 - стенотермные виды, криофилы;

3–7 – эвритермные виды;

8, 9 - стенотермные виды, термофилы


Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено» – стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке, – эврибионтными.

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.



Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): t мин, t опт, t макс – температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)


Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.



Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1 – клевер луговой; 2 – тысячелистник обыкновенный; 3 – келерия Делявина; 4 – мятлик луговой; 5 – типчак; 6 – подмаренник настоящий; 7 – осока ранняя; 8 – таволга обыкновенная; 9 – герань холмовая; 10 – короставник полевой; 11 – козлобородник коротконосиковый


Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности


Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.



Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)


Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

2.4. Принципы экологической классификации организмов

В экологии разнообразие и разноплановость способов и путей адаптации к среде создают необходимость множественных классификаций. Используя какой-либо единственный критерий, нельзя отразить все стороны приспособленности организмов к среде. Экологические классификации отражают сходство, возникающее у представителей самых разных групп, если они используют сходные пути адаптации. Например, если мы классифицируем животных по способам движения, то в экологическую группу видов, передвигающихся в воде реактивным путем, попадут такие разные по систематическому положению животные, как медузы, головоногие моллюски, некоторые инфузории и жгутиковые, личинки ряда стрекоз и др. (рис. 7). В основу экологических классификаций могут быть положены самые разнообразные критерии: способы питания, передвижения, отношение к температуре, влажности, солености среды, давлению и т. п. Разделение всех организмов на эврибионтных и стенобионтных по широте диапазона приспособлений к среде представляет пример простейшей экологической классификации.



Рис. 7. Представители экологической группы организмов, передвигающихся в воде реактивным способом (по С. A. Зернову, 1949):

1 – жгутиковое Medusochloris phiale;

2 – инфузория Craspedotella pileosus;

3 – медуза Cytaeis vulgaris;

4 – пелагическая голотурия Pelagothuria;

5 – личинка стрекозы-коромысла;

6 – плывущий осьминог Octopus vulgaris:

а – направление струи воды;

б – направление движения животного


Другой пример – разделение организмов на группы по характеру питания. Автотрофы – это организмы, использующие в качестве источника для построения своего тела неорганические соединения. Гетеротрофы – все живые существа, нуждающиеся в пище органического происхождения. В свою очередь, автотрофы делятся на фототрофов и хемотрофов. Первые для синтеза органических молекул используют энергию солнечного света, вторые – энергию химических связей. Гетеротрофов делят на сапрофитов, использующих растворы простых органических соединений, и голозоев. Голозои обладают сложным комплексом пищеварительных ферментов и могут употреблять в пищу сложные органические соединения, разлагая их на более простые составные компоненты. Голозои делятся на сапрофагов (питаются мертвыми растительными остатками), фитофагов (потребителей живых растений), зоофагов (нуждающихся в живой пище) и некрофагов (трупоядных животных). В свою очередь, каждую из этих групп можно подразделить на более мелкие, имеющие свою специфику в характере питания.

Иначе можно построить классификацию по способу добывания пищи. Среди животных выявляются, например, такие группы, как филътраторы (мелкие рачки, беззубка, кит и др.), пасущиеся формы (копытные, жуки-листоеды), собиратели (дятлы, кроты, землеройки, куриные), охотники на движущуюся добычу (волки, львы, мухи-ктыри и т. п.) и целый ряд других групп. Так, несмотря на большое несходство в организации, одинаковый способ овладения добычей приводит у львов и мух-ктырей к ряду аналогий в их охотничьих повадках и общих чертах строения: поджарости тела, сильному развитию мускулатуры, способности развивать кратковременно большую скорость и т. п.

Экологические классификации помогают выявлять возможные в природе пути приспособления организмов к среде.

2.5. Активная и скрытая жизнь

Обмен веществ – одно из главнейших свойств жизни, определяющее тесную вещественно-энергетическую связь организмов со средой. Метаболизм проявляет сильную зависимость от условий существования. В природе мы наблюдаем два основных состояния жизни: активную жизнедеятельность и покой. При активной жизнедеятельности организмы питаются, растут, передвигаются, развиваются, размножаются, характеризуясь при этом интенсивным метаболизмом. Покой может быть разным по глубине и продолжительности, многие функции организма при этом ослабевают или не выполняются совсем, так как уровень обмена веществ падает под влиянием внешних и внутренних факторов.

В состоянии глубокого покоя, т. е. пониженного вещественно-энергетического обмена, организмы становятся менее зависимыми от среды, приобретают высокую степень устойчивости и способны переносить условия, которые не могли бы выдержать при активной жизнедеятельности. Эти два состояния чередуются в жизни многих видов, являясь адаптацией к местообитаниям с нестабильным климатом, резкими сезонными изменениями, что характерно для большей части планеты.

При глубоком подавлении обмена веществ организмы могут вообще не проявлять видимых признаков жизни. Вопрос о том, возможна ли полная остановка обмена веществ с последующим возвращением к активной жизнедеятельности, т. е. своего рода «воскрешение из мертвых», дискутировался в науке более двух столетий.

Впервые явление мнимой смерти было обнаружено в 1702 г. Антони ван Левенгуком – открывателем микроскопического мира живых существ. Наблюдаемые им «анималькули» (коловратки) при высыхании капли воды сморщивались, выглядели мертвыми и могли пребывать в таком состоянии длительное время (рис. 8). Помещенные вновь в воду, они набухали и переходили к активной жизни. Левенгук объяснил это явление тем, что оболочка «анималькулей», очевидно, «не позволяет ни малейшего испарения» и они остаются живыми в сухих условиях. Однако через несколько десятилетий естествоиспытатели уже спорили о возможности того, что «жизнь может быть полностью прекращена» и восстановлена вновь «через 20, 40, 100 лет или более».

В 70-х годах XVIII в. явление «воскрешения» после высыхания было обнаружено и подтверждено многочисленными опытами у ряда других мелких организмов – пшеничных угриц, свободноживущих нематод и тихоходок. Ж. Бюффон, повторив опыты Дж. Нидгема с угрицами, утверждал, что «эти организмы можно заставить сколько угодно раз подряд умирать и вновь оживать». Л. Спалланцани впервые обратил внимание на глубокий покой семян и спор растений, расценив его как сохранение их во времени.


Рис. 8. Коловратка Philidina roseola на разных стадиях высыхания (по П. Ю. Шмидту, 1948):

1 – активная; 2 – начинающая сокращаться; 3 – полностью сократившаяся перед высыханием; 4 – в состоянии анабиоза


В середине XIX в. было убедительно установлено, что устойчивость сухих коловраток, тихоходок и нематод к высоким и низким температурам, недостатку или отсутствию кислорода возрастает пропорционально степени их обезвоживания. Однако оставался открытым вопрос, происходит ли при этом полное прерывание жизни или лишь ее глубокое угнетение. В 1878 г. Клод Бернал выдвинул понятие «скрытая жизнь», которую он характеризовал прекращением обмена веществ и «перерывом отношений между существом и средой».

Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни. В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.

Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.

Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.

Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.

Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).

Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.

Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.

He только в арктических и антарктических, но и в средних широтах некоторые морозостойкие виды членистоногих (коллемболы, ряд мух, жужелицы и др.) зимуют в состоянии оцепенения, быстро оттаивая и переходя к активности под лучами солнца, а затем вновь теряют подвижность при снижении температуры. Взошедшие весной растения прекращают и возобновляют рост и развитие вслед за похолоданием и потеплением. После выпавшего дождя голый грунт часто зеленеет за счет быстрого размножения почвенных водорослей, находившихся в вынужденном покое.


Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)


Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.

Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.

Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).

Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.


Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)


Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.

Среда обитания организма - это совокупность абиотических и биотических условий его жизни. Свойства среды постоянно меняются, и любое существо, чтобы выжить, приспосабливается к этим изменениям.

Воздействие среды воспринимается организмами через посредство факторов среды, называемых экологическими.

Экологические факторы - это определенные условия и элементы среды, которые оказывают специфическое воздействие на организм. Они подразделяются на абиотические, биотические и антропогенные.

Абиотическими факторами называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений . Среди них различают физические, химические и эдафические.

Физические факторы - это те факторы, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура, если она высокая, вызовет ожог, если очень низкая - обморожение. На действие температуры могут повлиять и другие факторы: в воде - течение, на суше - ветер и влажность и т.п.

Химические факторы - это те факторы, которые происходят от химического состава среды. Например, соленость воды если высокая, жизнь в водоеме может вовсе отсутствовать (Мертвое море), но в то же время в пресной воде не могут жить большинство морских организмов. От достаточности содержания кислорода зависит жизнь животных на суше и в воде, и т п.

Эдафические факторы , т е. почвенные , - это совокупность химических, физических и механических свойств почв и горных пород, оказывающих воздействие как на организмы, живущие в них, т.е. те, для которых они являются средой обитания, так и на корневую систему растений. Хорошо известно влияние химических компонентов (биогенных элементов), температуры, влажности, структуры почв, содержания гумуса и т.п. на рост и развитие растений.

Биотические факторы - совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую среду обитания. В последнем случае речь идет о способности самих организмов в определенной степени влиять на условия обитания. Например, в лесу под влиянием растительного покрова создается особый микроклимат, или микросреда, где по сравнению с открытым местообитанием создается свой температурно — влажностной режим: зимой здесь на несколько градусов теплее, летом - прохладнее и влажнее. Особая микросреда создается также в дуплах деревьев, в норах, в пещерах и т.п.

К биотическим факторам относятся внутривидовая конкуренция и межвидовые взаимоотношения.

Внутривидовая конкуренция – борьба за одни и те же ресурсы, происходящая между особями одного и того же вида. Это важный фактор саморегуляции популяций .

Межвидовые взаимоотношения значительно более разнообразны. Два живущие рядом вида могут вообще никак не влиять друг на друга, могут влиять благоприятно или неблагоприятно. Возможные типы комбинаций и отражают различные виды взаимоотношений:

Антропогенные факторы - факторы, порожденные человеком и воздействующие на окружающую среду (загрязнение , эрозия почв, уничтожение лесов и т.д.).

Среди абиотических факторов довольно часто выделяют климатические (температура, влажность воздуха, ветер и др.) и гидрографические - факторы водной среды (вода, течение, соленость и др.).

Большинство факторов качественно и количественно изменяются во времени. Например, климатические - в течение суток, сезона, по годам (температура, освещенность и др.).

Факторы, изменения которых во времени повторяются регулярно, называют периодическими. К ним относятся не только климатические, но и некоторые гидрографические - приливы и отливы, некоторые океанские течения. Факторы, возникающие неожиданно (извержение вулкана, нападение хищника и т.п.) называются непериодическими.

Подразделение факторов на периодические и непериодические имеет очень важное значение при изучении приспособленности организмов к условиям жизни.

Раздел 5

биогеоценотический и биосферный уровни

организации живого

Тема 56.

Экология как наука. Среда обитания. Факторы среды. Общие закономерности действия факторов среды на организмы

1. Основные вопросы теории

Экология – наука о закономерностях взаимоотношений организмов друг с другом и с окружающей средой. (Э. Геккель, 1866 г.)

Среда обитания – все условия живой и неживой природы, при которых существуют организмы и которые прямо или косвенно на них влияют.

Отдельными элементами среды являются экологические факторы:

абиотические

биотические

антропогенные

физико-хими-ческие, неорганические, факторы неживой природы: t , свет, вода, воздух, ветер, соленость, плотность, ионизирующее излучение.

влияние организмов или сообществ.

деятельность человека

прямая

косвенная

– промысел;

– строительство плотин.

– загрязнение;

– уничтожение кормовых угодий.

По периодичности действия – факторы, действующие

строго периодично.

без строгой периодичности.

По направленности действия

факторы направленного

действия

факторы неопределенного действия

– потепление;

– похолодание;

– заболачивание.

– антропогенные;

– загрязняющие вещества.

Адаптация организмов к факторам среды


Организмы легче адаптируются к факторам, действующим строго периодично и направленно . Адаптационность к ним наследственно обусловлена.

Трудна адаптация организмов к нерегулярно-периодическим факторам, к факторам неопределенного действия. В этом специфика и антиэкологичность антропогенных факторов.

Общие закономерности

действия факторов среды на организмы

Правило оптимума .

Для экосистемы, организма имеется диапазон наиболее благоприятного (оптимального) значения экологического фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно.

Правило взаимодействующих факторов .

Одни факторы могут усиливать или смягчать силу действия других факторов. Однако каждый из экологических факторов незаменим.

Правило лимитирующих факторов .

Фактор, находящийся в недостатке или избытке, отрицательно влияет на организмы и ограничивает возможность проявления силы действия других факторов (в т. ч. находящихся в оптимуме).

Лимитирующий фактор – жизненно важный фактор среды (вблизи критических точек), при отсутствии которого жизнь становится невозможной. Обусловливает границы распространения видов.

Ограничивающий фактор – фактор среды, выходящий за пределы выносливости организма.

Абиотические факторы

Солнечное излучение .

Биологическое действие света обусловлено интенсивностью, периодичностью, спектральным составом:

Экологические группы растений

по требованию к интенсивности освещения

Световой режим приводит к возникновению многоярусности и мозаичности растительного покрова.

Фотопериодизм – реакция организма на продолжительность светового дня, выражающаяся изменением физиологических процессов. С фотопериодизмом связаны сезонные и суточные ритмы.

Температура .

N : от –40 до +400С (в ср.: +15–300С).

Классификация животных по форме терморегуляции

Механизмы адаптации к температуре

Физический

Химический

Поведенческий

регулирование теплоотдачи (кожные покровы, жировые отложения, потоотделение у животных, транспирация у растений).

регулирование теплопродукции (интенсивный обмен веществ).

выбор предпочтительных положений (солнечные/затененные места, укрытия).

Адаптация к t осуществляется через размеры и форму тела.

Правило Бергмана : при продвижении на север средние размеры тела в популяциях теплокровных животных увеличиваются.

Правило Аллена : у животных одного вида размеры выступающих частей тела (конечности, хвост, уши) тем короче, а тело тем массивнее, чем холоднее климат.


Правило Глогера: виды животных, обитающих в холодных и влажных зонах, имеют более интенсивную пигментацию тела (черную или темно-коричневую), чем обитатели теплых и сухих областей, что позволяет им аккумулировать достаточное количество тепла.

Приспособления организмов к колебаниям t среды

Правило предварения : южные виды растений на севере встречаются на хорошо прогреваемых южных склонах, а северные виды у южных границ ареала – на прохладных северных склонах.

Миграция – переселение в более благоприятные условия.

Оцепенение – резкое снижение всех физиологических функций, неподвижность, прекращение питания (насекомые, рыбы, земноводные при t от 00 до +100С).

Спячка – понижение интенсивности обмена веществ, поддерживающегося за счет запасов жира, накопленных ранее.

Анабиоз – временная обратимая остановка жизнедеятельности.

Влажность .

Механизмы регулирования водного баланса

Морфологический

Физиологический

Поведенческий

через форму тела и покровы, через испарение и органы выделения.

посредством высвобождения метаболической воды из жиров, белков, углеводов в результате окисления.

через выбор предпочтительных положений в пространстве.

Экологические группы растений по требованию к влажности

Гидрофиты

Гигрофиты

Мезофиты

Ксерофиты

наземно-водные растения, погруженные в воду только нижними частями (тростник).

наземные растения, живущие в условиях повышенной влажности (тропические травы).

растения мест со средним увлажнением (растения умеренной зоны, культурные растения).

растения мест с недостаточным увлажнением (растения степей, пустынь).

Соленость .

Галофиты – организмы, предпочитающие избыток солей.

Воздух : N 2 – 78%, О2 – 21%, СО2 – 0,03%.

N 2 : усваивается клубеньковыми бактериями, в виде нитратов и нитритов поглощается растениями. Повышает засухоустойчивость растений. При подводном погружении человека N 2 растворяется в крови, а при резком подъеме выделяется в виде пузырьков – кессонная болезнь .

О2:

СО2: участие в фотосинтезе, продукт дыхания животных и растений.

Давление .

N : 720–740 мм рт. ст.

При подъеме: парциальное давление О2↓ → гипоксия, анемия (увеличение количества эритроцитов на единицу V крови и содержание Нв ).

На глубине: парциальное давление О2 → повышается растворимость газов в крови → гипероксия.

Ветер .

Размножение, расселение, перенос пыльцы, спор, семян, плодов.

Биотические факторы

1. Симбиоз – полезное сожительство, приносящее пользу хотя бы одному:

а) мутуализм

обоюдовыгодное, обязательное

клубеньковые бактерии и бобовые растения, микориза, лишайники.

б) протокооперация

взаимовыгодное, но необязательное

копытные и воловьи птицы, актиния и рак-отшельник.

в) комменсализм (нахлебничество)

один организм использует другой как жилище и источник питания

бактерии ЖКТ, львы и гиены, животные – распространители плодов и семян.

г) синойкия

(квартирантство)

особь одного вида использует особь другого вида только как жилище

горчак и моллюск, насекомые – норы грызунов.

2. Нейтрализм – сожительство видов на одной территории, которое не влечет для них ни положительных, ни отрицательных последствий.

лоси – белки.

3. Антибиоз – сожительство видов, приносящее вред.

а) конкуренция

– –

саранча – грызуны – травоядные;

сорняки – культурные растения.

б) хищничество

+ –

волки, орлы, крокодилы, инфузория-туфелька, растения-хищники, каннибализм.

+ –

вши, аскарида, цепень.

г) аменсализм

(аллелопатия)

0 –

особи одного вида, выделяя вещества, угнетают особей других видов: антибиотики , фитонциды.

Межвидовые отношения

Трофические

Топические

Форические

Фабрические

связи

Пищевые.

Создание одним видом среды для другого.

Один вид распространяет другой.

Один вид строит сооружения, используя мертвые остатки.

Среды жизни

Среда жизни – совокупность условий, обеспечивающих жизнь организма.

1. Водная среда

однородна, мало изменчива, стабильна, колебания t – 500, плотная.

lim факторы:

О2, свет, ρ, солевой режим, υ течения.

Гидробионты:

планктон – свободно парящие,

нектон – активно передвигающиеся,

бентос – обитатели дна,

пелагос – обитатели водной толщи,

нейстон – обитатели верхней пленки.

2. Наземно-воздушная среда

сложная, разнообразная, требует высокого уровня организации, низкая ρ, большие колебания t (1000), высокая подвижность атмосферы.

lim факторы:

t и влажность , интенсивность света, климатические условия.

Аэробионты

3. Почвенная среда

сочетает свойства водной и наземно-воздушной сред, колебания t невелики, высокая плотность.

lim факторы:

t (мерзлота), влажность (засуха, болото), кислород.

Геобионты,

эдафобионты

4. Организменная среда

обилие пищи, стабильность условий, защищенность от неблагоприятных воздействий.

lim факторы:

симбионты

Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном и меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями и потребляя поступающие извне материю, энергию, информацию.

Приспособления организмов к среде носят название адаптации. Способность к адаптациям - одно из основных свойств жизни вообще, так как обеспечивает самую возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и изменяются в ходе эволюции видов.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Экологические факторы делятся на абиотические, биотические и антропогенные.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой

природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы - это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов - растениями, животными, микроорганизмами, зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составная часть среды каждого живого существа.

Взаимные связи организмов - основа существования биоценозов и популяций; рассмотрение их относится к области синэкологии.

Антропогенные факторы - это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. В ходе истории человечества развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.



Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете следует выделять в особую силу, не укладывающуюся в рамки этой классификации. В настоящее время практически вся судьба живого покрова Земли и всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываются в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. п.



Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток или сезоном года, или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например без изменения погодных условий в разные годы, явления катастрофического характера - бури, ливни, обвалы и т.п.; 3) направленными на протяжении известных, иногда длительных отрезков времени, например, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т.п.

Экологические факторы среды оказывают на живые организмы различные воздействия, т.е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие анатомические и морфологические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

Приведем наиболее известные.

Закон минимума Ю. Либиха (1873):

  • а) выносливость организма определяется слабым звеном в цепи его экологических потребностей;
  • б) все условия среды, необходимые для поддержания жизни, имеют равную роль (закон равнозначности всех условий жизни) , любой фактор может ограничивать возможности существования организма.

Закон ограничивающих факторов, или закон Ф. Блехмана (1909): факторы среды, имеющие в конкретных условиях максимальное значение, особенно затрудняют (ограничивают) возможности существования вида в данных условиях.

Закон толерантности В.Шелфорда (1913): ограничивающим фактором жизни организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости организма к этому фактору.

В качестве примера, поясняющего закон минимума, Ю.Либих рисовал бочку с отверстиями, уровень воды в которой символизировал выносливость организма, а отверстия - экологические факторы.

Закон оптимума: каждый фактор имеет лишь определенные пределы положительного влияния на организмы.

Результат действия переменного фактора зависит, прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора, угнетающее действие данного фактора на организмы

(зона пессимума). Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности.

Примером такого рода зависимости может служить следующее наблюдение. Среднесуточная физиологическая потребность во фторе взрослого человека составляет 2000-3000 мкг, причем 70 % этого количества человек получает с водой и только 30 % с пищей. При длительном употреблении воды, бедной солями фтора (0,5 мг/дм 3 и меньше), развивается кариес зубов. Чем меньше концентрация фтора в воде, тем выше заболеваемость населения кариесом.

Высокие концентрации фтора в питьевой воде также приводят к развитию патологии. Так, при концентрации его более 15 мг/дм 3 возникает флюороз - своеобразная крапчатость и буроватая окраска зубной эмали, зубы постепенно разрушаются.

Рис. 3.1. Зависимость результата действия экологического фактора от его интенсивности или просто оптимумом , для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено

Неоднозначность действия фактора на разные функции. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других.

Правило взаимодействия факторов. Сущность его заключается в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла может в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений - компенсироваться повышенным содержанием углекислого газа в воздухе и т.п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Правило лимитирующих факторов: фактор , находящийся в недостатке или избытке (вблизи критических точек),отрицательно влияет на организмы и, кроме того, ограничивает возможность проявления силы действия других факторов, в том числе и находящихся в оптимуме. Например, если в почве имеются в достатке все, кроме одного, необходимые для растения химические элементы, то рост и развитие растения будут обусловливаться тем из них, который находится в недостатке. Все другие элементы при этом не проявляют своего действия. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их ареалы. От них зависит продуктивность организмов и сообществ. Поэтому крайне важно своевременно выявлять факторы минимального и избыточного значения, исключать возможности их проявления (например, для растений - сбалансированным внесением удобрений).

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания растений и т.п.).

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильнокислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающее действие кислотности. Знание ограничивающих факторов, таким образом, - ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Закон максимизации энергии, или закон Одумов: выживание одной системы в соперничестве с другими определяется наилучшей организацией поступления в нее энергии и использования ее максимального количества наиболее эффективным способом. Этот закон справедлив и в отношении информации. Таким образом, наилучшими шансами на самосохранение обладает система, которая в наибольшей степени способствует поступлению, выработке и эффективному использованию энергии и информации. Любая природная система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное развитие невозможно.

Этот закон имеет важное практическое значение из-за основных следствий:

  • а) абсолютно безотходное производство невозможно , поэтому важно создавать малоотходные производства с малой ресурсоемкостью как на входе, так и на выходе (экономность и незначительные выбросы). Идеальным на сегодняшний день являются создание циклического производства (отходы одного производства служат сырьем для другого и т.д.) и организация разумного захоронения неизбежных остатков, нейтрализация неустраняемых энергетических отходов;
  • б) любая развитая биотическая система, используя и видоизменяя среду жизни, представляет потенциальную угрозу менее организованным системам. Поэтому в биосфере невозможно повторное зарождение жизни - она будет уничтожена существующими организмами. Следовательно, воздействуя на среду обитания, человек должен нейтрализовать эти воздействия, поскольку они могут оказаться разрушительными для природы и самого человека.

Закон ограниченности природных ресурсов. Правило одного процента. Поскольку планета Земля представляет собой естественное ограниченное целое, то на ней не могут существовать бесконечные части, поэтому все природные ресурсы Земли являются конечными. К неисчерпаемым ресурсам можно отнести энергетические, полагая, что энергия Солнца дает практически вечный источник получения полезной энергии. Ошибка здесь заключается в том, что при таких рассуждениях не учитываются ограничения, накладываемые самой энергетикой биосферы. Согласно правилу одного процента изменение энергетики природной системы в пределах 1 % выводит ее из равновесного состояния. Все крупномасштабные явления на поверхности Земли (мощные циклоны, извержения вулканов, процесс глобального фотосинтеза) имеют суммарную энергию, не превышающую 1 % от энергии солнечного излучения, падающего на поверхность Земли. Искусственное же привнесение энергии в биосферу в наше время достигло значений, близких к предельным (отличающихся от них не более чем на один математический порядок - в 10 раз).

Общие закономерности действия факторов среды на организмы

Общее количество экологических факторов, воздействующих на организм или на биоценоз, огромно, некоторые из них хорошо известны и понятны, например температура воды и воздуха действие других, например изменения силы гравитации - только недавно стало изучаться. Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выделить ряд закономерностей.

Закон оптимума (толерантности)

Согласно этому закону, впервые сформулированному В. Шелфордом, для биоценоза, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно.

К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов (греч. эури – широкий; биос – жизнь).

Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос - узкий).

Виды, способные существовать в широком диапазоне температур, называются эвритермными , а те, которые способны жить только в узком интервале температурных значений, - стенотермными .

Возможность обитать в условиях с различной соленостью воды называется эвригалинностью , на различных глубинах - эврибатностью , в местах с различной влажностью почвы - эвригигричностью и т.д. Важно подчеркнуть, что зоны оптимума по отношению к различным факторам различаются, и поэтому организмы полностью проявляют свои потенциальные возможности в том случае, если весь спектр факторов имеет для них оптимальные значения.

Неоднозначность действия факторов среды на разные функции организма

Каждый фактор среды неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться угнетением для других. Например, температура воздуха от + 40 до + 45 °С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но при этом тормозит двигательную активность, что в конечном итоге приводит к тепловому оцепенению. Для многих рыб температура воды, оптимальная для созревания половых продуктов, оказывается неблагоприятной для икрометания.

Жизненный цикл, в котором в определенные периоды времени организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и др.), всегда согласован с сезонными изменениями совокупности факторов среды. При этом подвижные организмы могут менять места своего обитания для успешной реализации всех потребностей своей жизни.

Разнообразие индивидуальных реакций на факторы среды

Способность к выносливости, критические точки, зоны оптимума и нормальной жизнедеятельности достаточно часто меняются на протяжении жизненного цикла особей. Эта изменчивость определяется как наследственными качествами, так и возрастными, половыми и физиологическими различиями. Например, взрослые особи пресноводных карповых и окунеобразных видов рыб, такие как карп, судак европейский обыкновенный и др. вполне способны обитать в воде заливов внутренних морей с соленостью до 5-7 г/л, но их нерестилища располагаются только в сильно опресненных районах, около устьев рек, потому что икра этих рыб может нормально развиваться при солености воды не более 2 г/л. Личинки крабов не могут жить в пресной воде, но взрослые особи встречаются в устьевой зоне рек, где обилие выносимого речным потоком органического материала создает хорошую кормовую базу. У бабочки мельничной огневки - одного из опасных вредителей муки и зерновых продуктов - критическая для жизни минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц -27 °С. Понижение температуры воздуха до -10 °С смертельно для гусениц, но не опасно для взрослых форм и яиц данного вида. Таким образом, экологическая толерантность, свойственная для вида в целом, оказывается более широкой, чем толерантность каждой отдельной особи на данном этапе ее развития.

Относительная независимость приспособления организмов к разным факторам среды

Степень выносливости организма к какому-то отдельному фактору не означает наличие аналогичной толерантности по отношению к другому фактору. Виды, способные существовать в широком диапазоне температурных условий, могут оказаться не в состоянии выдерживать значительные колебания солености воды или влажности почвенной среды. Иными словами, эвритермные виды могут быть стеногалинными или стеногигрическими. Набор экологических толерантностей (чувствительностей) к различным факторам среды называется экологическим спектром вида.

Взаимодействие экологических факторов

Зона оптимума и пределы выносливости по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании воздействуют одновременно другие факторы. Одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла может в какой-то мере смягчаться пониженной влажностью воздуха. Увядание растения можно приостановить как увеличением количества влаги в почве, так и снижением температуры воздуха, уменьшая тем самым испарение. Недостаток света для фотосинтеза растений можно компенсировать повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы. Полное отсутствие света приведет к скорой гибели растение, даже если влажность почвы и количество в ней всех питательных веществ оптимальны. Совместное действие нескольких факторов, при котором эффект их воздействия взаимно усиливается, называется синергизмом . Синергизм четко проявляется в комбинациях тяжелых металлов (меди и цинка, меди и кадмия, никеля и цинка, кадмия и ртути, никеля и хрома), а также аммиака и медй, синтетических поверхностно активных веществ. При совокупном воздействии пар данных веществ их токсический эффект значительно возрастает. Вследствие этого см:еси даже небольших концентраций этих веществ могут оказаться смертельными для многих организмов. Примером синергизма может являться также повышенная угроза замерзания при морозе с сильным ветром, чем в безветренную погоду.

В противоположность синергизму можно выделить определенные факторы, воздействие которых снижает мощность результирующего эффекта воздействия. Токсичность солей цинка и свинца снижается в присутствии соединений кальция, а синильной кислоты - в присутствии окиси и закиси железа. Такое явление носит название антогонизм . При этом зная, какое именно вещество оказывает антагонистическое воздействие на данный загрязнитель, можно добиться значительного снижения его негативного воздействия.

Правило лимитирующих факторов среды и закон минимума

Сущность правила лимитирующих факторов среды заключается в том, что фактор, находящийся в недостатке или избытке, отрицательно влияет на организмы и, кроме того, ограничивает возможность проявления силы действия других факторов, в том числе и находящихся в оптимуме. Например, если в почве имеются в достатке все, кроме одного, необходимого для растения химического или физического фактора среды, то рост и развитие растения будет зависеть именно от величины этого фактора. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их ареалы. От них зависит продуктивность организмов и сообществ.

Правило лимитирующих факторов среды позволило прийти к обоснованию так называемого «закона минимума». Предполагается, что впервые закон минимума сформулировал немецкий агроном Ю. Либих в 1840 г. Согласно данному закону, результат воздействия совокупности экологических факторов на урожайность сельскохозяйственных культур зависит прежде всего не от тех элементов среды, которые присутствуют обычно в достаточном количестве, а от тех, для которых свойственны минимальные концентрации (бор, медь, железо, магний и др.). Например, дефицит бора резко снижает засухоустойчивость растений.

В современной трактовке этот закон звучит следующим образом: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. То есть жизненные возможности организма лимитируются экологическими факторами, количество и качество которых близко к необходимому для данного организма минимуму. Дальнейшее снижение этих факторов ведет к гибели организма.

Адаптационные возможности организмов

К настоящему времени организмы освоили четыре основные среды своего обитания, которые значительно различаются по физико-химическим условиям. Это водная, наземно-воздушная, почвенная среда, а также та среда, которой являются сами живые организмы. Кроме того, живые организмы обнаружены в слоях органических и органо-минеральных веществ, расположенных глубоко под землей, в грунтовых и артезианских водах. Так, специфические бактерии найдены в нефти, залегающей на глубинах более 1 км. Таким образом, Сфера жизни включает не только почвенный слой, но может при наличии благоприятных условий распространяться значительно глубже в земную кору. При этом основным сдерживающим проникновение в глубь Земли фактором выступает, по-видимому, температура среды, которая повышается по мере возрастания глубины от поверхности почвы. Считается, при температуре более 100 °С активная жизнь невозможна.

Приспособления организмов к факторам среды, в которой они обитают, носят название адаптаций . Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание. Способность к адаптациям может считаться одним из основных свойств жизни вообще, так как обеспечивает возможность организмам выживать и устойчиво размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и целых экологических систем.

Основными типами адаптаций на уровне организма являются следующие:

· биохимические - они проявляются во внутриклеточных процессах, могут касаться изменения работы ферментов или их общего количества;

· физиологические - например, усиление частоты дыхания и сердечного ритма при интенсивном движении, усиление потоотделения при повышении температуры у ряда видов;

· морфоанатомические - особенности строения и формы тела, связанные с образом и средой жизни;

· поведенческие - например, строительство некоторыми видами гнезд и нор;

· онтогенетические - ускорение или замедление индивидуального развития, способствующие выживанию при изменении условий.

Организмы легче всего адаптируются к тем экологическим факторам, которые четко, устойчиво изменяются.